
Inets

version 3.0

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Inets 1

1.1 Inets Release Notes . 1

1.1.1 Inets 3.0.0 . 1

1.1.2 Inets 2.6.2 . 2

1.1.3 Inets 2.6.1 . 3

1.1.4 Inets 2.6.0 . 3

1.1.5 Inets 2.5.6 . 4

1.1.6 Inets 2.5.5 . 4

2 Inets Reference Manual 7

2.1 inets . 18

2.2 ftp . 19

2.3 httpd . 27

2.4 httpd conf . 40

2.5 httpd core . 42

2.6 httpd socket . 50

2.7 httpd util . 51

2.8 mod actions . 57

2.9 mod alias . 59

2.10 mod auth . 62

2.11 mod browser . 73

2.12 mod cgi . 74

2.13 mod dir . 77

2.14 mod disk log . 78

2.15 mod esi . 82

2.16 mod get . 88

2.17 mod head . 89

2.18 mod htaccess . 90

2.19 mod include . 95

2.20 mod log . 98

2.21 mod range . 101

iiiInets

2.22 mod responsecontrol . 102

2.23 mod security . 103

2.24 mod trace . 108

Glossary 109

iv Inets

Chapter 1

Inets

1.1 Inets Release Notes

1.1.1 Inets 3.0.0

Improvements and new features

� Added HTTP client to the application.
Auther: Johan Blom of Mobile Arts AB.

� FTP: More info in exit reason when socket operation fails.
(Own Id: OTP-4429)

� Make install targets corrected (INSTALL SCRIPT is used instead of INSTALL PROGRAMS for
scripts).
(Own Id: OTP-4428)

� In inets, mod cgi crashes when a directory is protected for a group or for a user and we try to
execute a CGI script inside this protected directory.
Guillaume Bongenaar.
(Own Id: OTP-4416)

� Removed crypto application dependency.
Matthias Lang
(Own Id: OTP-4417)

� Use the same read algorithm for socket type ssl as is used for ip comm. As of version 2.3.5 of the
ssl application it is possible to use socket option factive, onceg, so the same algorithm can be used
for both ip comm and ssl.
(Own Id: OTP-4374)
(Aux Id: Seq 7417)

� Added inets test suite to the release. Including the lightweight inets test server.

� Incorrectly formated disk log entries. term to binary was (incorrectly) used for the external
format.
Own Id: OTP-4228
Aux Id: Seq 7239

� Adding verbosity printouts to ’catch’ cgi problems on some platforms.

� Updated to handle HTTP/1.1.

– Persistent connections are now default for http/1.1 clients

1Inets

Chapter 1: Inets

– Module mod esi can send data to the client in chunks.

– Updated configuration directives KeepAlive

– New configuration directives:

� MaxKeepAliveRequest
� ErlScriptTimeout
� ErlScriptNoCache
� ScriptTimeout
� ScriptNoCache

– New functions in httpd utility to ease the development of http/1.1 complaint modules.

– Record mod has a new field absolute uri.

– All header field names in parsed header is in lowercase.

– httpd handles chunked requests.

– New module mod range that handles range-requests.

– New module mod responsecontrol that controls how the request will be handled the due to
the If-Modified, If-Match and If-Range http header fields.

Reported Fixed Bugs and Malfunctions

� POST requests not properly handled.
(Own Id: OTP-4409)
(Aux Id: Seq 7485)

� Incompatible change in the inets API.
(Own Id: OTP-4408)
(Aux Id: Seq 7485)

� When opening the disk log (mod disk log), an open attempt is made without a size option. If the
file exist, then it is opened. If the file does not exist, then another attempt is made, this time with
the size option.
(Own Id: OTP-4281)
(Aux Id: Seq 7312)

� Changing of disk log format failes. Restart of webserver after change of disk log format
(DiskLogFormat) fails with arg mismatch.
(Own Id: OTP-4231)
(Aux Id: Seq 7244)

1.1.2 Inets 2.6.2

Improvements and new features

� Added a new configuration directive LogFileFormat, that alter the file-format of the log files.
(Own Id: OTP-4210)
(Aux Id: Seq 7161)

� Calculation of content length incorrect.
(Own Id: OTP-4207)
(Aux Id: Seq 7209)

Reported Fixed Bugs and Malfunctions

-

2 Inets

1.1: Inets Release Notes

1.1.3 Inets 2.6.1

Improvements and new features

� Improved supervision of free-flying auth- and security server(s).

Reported Fixed Bugs and Malfunctions

� mod disk log returns an error reason that reflects the error when disk log cannot open a log file.
(Own Id: OTP-4195)
(Aux Id: Seq 7161)

� Request headers now read a chunk at a time (see the factive,onceg inet option) for socket type
ip comm.
Own Id: OTP-4159

1.1.4 Inets 2.6.0

Improvements and new features

� Added limited user support for user configurable access restriction (.htaccess).
(Own Id: OTP-2981)

� Introduced ability to block/unblock the webserver.
(Own Id: OTP-3624)

� Added support for the account command to ftp.
(Own Id: OTP-3752)

� Added support for the append command to ftp.
(Own Id: OTP-3753)

� Re-introduced the abillity to restart the webserver (uses block/unblock).
(Own Id: OTP-3794)
(Aux Id: Seq 5020)

� Socket mode changed from active to passive.
(Own Id: OTP-4001)

� Added the possibility to set a timeout in ftp:open/1

(Own Id: OTP-4062)

Reported Fixed Bugs and Malfunctions

� Trailing data sent to a webserver from a client is now ignored
(Own Id: OTP-3940)
(Aux Id: Seq 5201)

� Only one ErlScriptAlias is actually used (the first)
Own Id: OTP-3974

� Fixed a bug in mod auth:load/2.
(Own Id: OTP-3975)
(Aux Id: Seq 5249)

� httpd listener exited when a call to ssl:accept returned ferror,esslacceptg.
(Own Id: OTP-4029)
(Aux Id: Seq 7030)

3Inets

Chapter 1: Inets

� Made a correction to the example configuration file ssl.conf by removing mod auth mnesia
from the Modules
(Own Id: OTP-4051)
(Aux Id: Seq 7049)

� Fixed bad return value from mod auth:add user/2 when Mnesia is used.
(Own Id: OTP-4052)
(Aux Id: Seq 7049)

� Fixed a bug in mod auth plain:delete user/2.
(Own Id: OTP-4068)

� The configuration parameter AuthAccessPassword should now work
(Own Id: OTP-4069)
(Aux Id: Seq 7049)

� httpd crashed when given the start address *
(Own Id: OTP-4138)

1.1.5 Inets 2.5.6

Improvements and new features

� Improved handling of DOS attacks. The following configuration directives have been added to
improve the handling of DOS attacks bymalformed GET requests:

– MaxHeaderSize

– MaxHeaderAction

– MaxBodySize

– MaxBodyAction

(Own Id: OTP-3640)
(Aux Id: Seq 4607, Seq 5077)
Own Id: OTP-1078, OTP-1096
Aux Id: HA36413

� Added some (SSL related) configuration directives. See documentation for further information.

– SSLCACertificateFile

– SSLCiphers

– SSLPasswordCallbackModule

– SSLVerifyClient

(Own Id: OTP-3873)
(Aux Id: Seq 5088)

Reported Fixed Bugs and Malfunctions

-

1.1.6 Inets 2.5.5

Improvements and new features

� Better handling of invalid server response (e.g. as a result of anerroneous server config).

4 Inets

1.1: Inets Release Notes

Reported Fixed Bugs and Malfunctions

� Invalid guard in function

ftp:open/2

.
This problem exists only in Inets 2.5.4. Use

ftp:open/3

instead.
(Own Id: OTP-3892)
(Aux Id: Seq 4958)

5Inets

Chapter 1: Inets

6 Inets

Inets Reference Manual

Short Summaries

� Application inets [page 18] – Inets
� Erlang Module ftp [page 19] – A File Transfer Protocol client
� Erlang Module httpd [page 27] – An implementation of an HTTP 1.1 compliant

Web server, as defined in RFC 2616.
� Erlang Module httpd conf [page 40] – Configuration utility functions to be used

by the EWSAPI programmer.
� Erlang Module httpd core [page 42] – The core functionality of the Web server.
� Erlang Module httpd socket [page 50] – Communication utility functions to be

used by the EWSAPI programmer.
� Erlang Module httpd util [page 51] – Miscellaneous utility functions to be used

when implementing EWSAPI modules.
� Erlang Module mod actions [page 57] – Filetype/method-based script execution.
� Erlang Module mod alias [page 59] – This module creates aliases and redirections.
� Erlang Module mod auth [page 62] – User authentication using text files, dets or

mnesia database.
� Erlang Module mod browser [page 73] – Tries to recognize the browser and

operating-system of the client.
� Erlang Module mod cgi [page 74] – Invoking of CGI scripts.
� Erlang Module mod dir [page 77] – Basic directory handling.
� Erlang Module mod disk log [page 78] – Standard logging using the ”Common

Logfile Format” and disk log(3).
� Erlang Module mod esi [page 82] – Efficient Erlang Scripting
� Erlang Module mod get [page 88] – Handle GET requests.
� Erlang Module mod head [page 89] – Handles HEAD requests to regular files.
� Erlang Module mod htaccess [page 90] – This module provides per-directory user

configurable access control.
� Erlang Module mod include [page 95] – Server-parsed documents.
� Erlang Module mod log [page 98] – Standard logging using the ”Common Logfile

Format” and text files.
� Erlang Module mod range [page 101] – handle requests for parts of a file
� Erlang Module mod responsecontrol [page 102] – Controls that the request

conditions is fullfilled.
� Erlang Module mod security [page 103] – Security Audit and Trailing

Functionality
� Erlang Module mod trace [page 108] – handle trace requests

7Inets

Inets Reference Manual

inets

No functions are exported.

ftp

The following functions are exported:

� account(Pid,Account) -> ok | ferror, Reasong
[page 20] Specify which account to use.

� append(Pid, LocalFile [, RemoteFile]) -> ok | ferror, Reasong
[page 20] Transfer file to remote server, and append it to Remotefile.

� append bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong
[page 20] Transfer a binary into a remote file.

� append chunk(Pid, Bin) -> ok | ferror, Reasong
[page 20] append a chunk to the remote file.

� append chunk start(Pid, File) -> ok | ferror, Reasong
[page 20] Start transfer of file chunks for appending to File.

� append chunk end(Pid) -> ok | ferror, Reasong
[page 21] Stop transfer of chunks for appending.

� cd(Pid, Dir) -> ok | ferror, Reasong
[page 21] Change remote working directory.

� close(Pid) -> ok
[page 21] End ftp session.

� delete(Pid, File) -> ok | ferror, Reasong
[page 21] Delete a file at the remote server..

� formaterror(Tag) -> string()
[page 21] Return error diagnostics.

� lcd(Pid, Dir) -> ok | ferror, Reasong
[page 21] Change local working directory.

� lpwd(Pid) -> fok, Dirg
[page 21] Get local current working directory.

� ls(Pid [, Dir]) -> fok, Listingg | ferror, Reasong
[page 22] List contents of remote directory.

� mkdir(Pid, Dir) -> ok | ferror, Reasong
[page 22] Create remote directory.

� nlist(Pid [, Dir]) -> fok, Listingg | ferror, Reasong
[page 22] List contents of remote directory.

� open(Host [, Port] [, Flags]) -> fok, Pidg | ferror, Reasong
[page 22] Start an ftp client.

� open(foption list,Option listg) -> fok, Pidg | ferror, Reasong
[page 22] Start an ftp client.

� pwd(Pid) -> fok, Dirg | ferror, Reasong
[page 23] Get remote current working directory.

� recv(Pid, RemoteFile [, LocalFile]) -> ok | ferror, Reasong
[page 23] Transfer file from remote server.

8 Inets

Inets Reference Manual

� recv bin(Pid, RemoteFile) -> fok, Bing | ferror, Reasong
[page 23] Transfer file from remote server as a binary.

� rename(Pid, Old, New) -> ok | ferror, Reasong
[page 23] Rename a file at the remote server..

� rmdir(Pid, Dir) -> ok | ferror, Reasong
[page 24] Remove a remote directory.

� send(Pid, LocalFile [, RemoteFile]) -> ok | ferror, Reasong
[page 24] Transfer file to remote server.

� send bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong
[page 24] Transfer a binary into a remote file.

� send chunk(Pid, Bin) -> ok | ferror, Reasong
[page 24] Write a chunk to the remote file.

� send chunk start(Pid, File) -> ok | ferror, Reasong
[page 24] Start transfer of file chunks.

� send chunk end(Pid) -> ok | ferror, Reasong
[page 25] Stop transfer of chunks.

� type(Pid, Type) -> ok | ferror, Reasong
[page 25] Set transfer type to ascii or binary.

� user(Pid, User, Password) -> ok | ferror, Reasong
[page 25] User login.

� user(Pid, User, Password,Account) -> ok | ferror, Reasong
[page 25] User login.

httpd

The following functions are exported:

� start()
[page 30] Start a server as specified in the given config file.

� start(ConfigFile) -> ServerRet
[page 30] Start a server as specified in the given config file.

� start link()
[page 30] Start a server as specified in the given config file.

� start link(ConfigFile) -> ServerRet
[page 30] Start a server as specified in the given config file.

� restart()
[page 30] Restart a running server.

� restart(Port) -> ok | ferror,Reasong
[page 30] Restart a running server.

� restart(ConfigFile) -> ok | ferror,Reasong
[page 30] Restart a running server.

� restart(Address,Port) -> ok | ferror,Reasong
[page 30] Restart a running server.

� stop()
[page 30] Stop a running server.

� stop(Port) -> ServerRet
[page 31] Stop a running server.

9Inets

Inets Reference Manual

� stop(ConfigFile) -> ServerRet
[page 31] Stop a running server.

� stop(Address,Port) -> ServerRet
[page 31] Stop a running server.

� block() -> ok | ferror,Reasong
[page 31] Block a running server.

� block(Port) -> ok | ferror,Reasong
[page 31] Block a running server.

� block(ConfigFile) -> ok | ferror,Reasong
[page 31] Block a running server.

� block(Address,Port) -> ok | ferror,Reasong
[page 31] Block a running server.

� block(Port,Mode) -> ok | ferror,Reasong
[page 31] Block a running server.

� block(ConfigFile,Mode) -> ok | ferror,Reasong
[page 31] Block a running server.

� block(Address,Port,Mode) -> ok | ferror,Reasong
[page 31] Block a running server.

� block(ConfigFile,Mode,Timeout) -> ok | ferror,Reasong
[page 31] Block a running server.

� block(Address,Port,Mode,Timeout) -> ok | ferror,Reasong
[page 31] Block a running server.

� unblock() -> ok | ferror,Reasong
[page 31] Unblock a blocked server.

� unblock(Port) -> ok | ferror,Reasong
[page 31] Unblock a blocked server.

� unblock(ConfigFile) -> ok | ferror,Reasong
[page 31] Unblock a blocked server.

� unblock(Address,Port) -> ok | ferror,Reasong
[page 32] Unblock a blocked server.

� parse query(QueryString) -> ServerRet
[page 32] Parse incoming data to erl and eval scripts.

� Module:do(Info)-> fproceed, OldDatag | fproceed, NewDatag | fbreak,
NewDatag | done
[page 32] The do/1 i called for each request to the Web server.

� Module:load(Line, Context)-> eof | ok | fok, NewContextg | fok,
NewContext, Directiveg | fok, NewContext, DirectiveListg | ferror,
Reasong
[page 33] Load a configuration directive.

� Module:store(fDirectiveKey, DirectiveValueg, DirectiveList)-> fok,
fDirectiveKey, NewDirectiveValuegg | fok, [fok, fDirectiveKey,
NewDirectiveValuegg | ferror, Reasong
[page 33] Alter the value of one or more configuration directive.

� Module:remove(ConfigDB)-> ok | ferror, Reasong
[page 34] Callback function that is called when the Web server is closed.

10 Inets

Inets Reference Manual

httpd conf

The following functions are exported:

� check enum(EnumString,ValidEnumStrings) -> Result
[page 40] Check if string is a valid enumeration.

� clean(String) -> Stripped
[page 40] Remove leading and/or trailing white spaces.

� custom clean(String,Before,After) -> Stripped
[page 40] Remove leading and/or trailing white spaces and custom characters.

� is directory(FilePath) -> Result
[page 40] Check if a file path is a directory.

� is file(FilePath) -> Result
[page 41] Check if a file path is a regular file.

� make integer(String) -> Result
[page 41] Return an integer representation of a string.

httpd core

No functions are exported.

httpd socket

The following functions are exported:

� deliver(SocketType,Socket,Binary) -> Result
[page 50] Send binary data over socket.

� peername(SocketType,Socket) -> fPort,IPAddressg
[page 50] Return the port and IP-address of the remote socket.

� resolve() -> HostName
[page 50] Return the official name of the current host.

httpd util

The following functions are exported:

� convert request date(DateString) -> ErlDate|bad date
[page 51] Convert The the date to the Erlang date format.

� create etag(FileInfo) -> Etag
[page 51] Calculates the Etag for a file.

� decode base64(Base64String) -> ASCIIString
[page 51] Convert a base64 encoded string to a plain ascii string.

� decode hex(HexValue) -> DecValue
[page 51] Convert a hex value into its decimal equivalent.

� day(NthDayOfWeek) -> DayOfWeek
[page 51] Convert the day of the week (integer [1-7]) to an abbreviated string.

� encode base64(ASCIIString) -> Base64String
[page 52] Convert an ASCII string to a Base64 encoded string.

11Inets

Inets Reference Manual

� flatlength(NestedList) -> Size
[page 52] Compute the size of a possibly nested list.

� header(StatusCode,PersistentConn)
[page 52] Generate a HTTP 1.1 header.

� header(StatusCode,Date)
[page 52] Generate a HTTP 1.1 header.

� header(StatusCode,MimeType,Date)
[page 52] Generate a HTTP 1.1 header.

� header(StatusCode,MimeType,PersistentConn,Date) -> HTTPHeader
[page 52] Generate a HTTP 1.1 header.

� hexlist to integer(HexString) -> Number
[page 52] Convert a hexadecimal string to an integer.

� integer tohexlist(Number) -> HexString
[page 52] Convert an integer to a hexadecimal string.

� key1search(TupleList,Key)
[page 53] Search a list of key-value tuples for a tuple whose first element is a key.

� key1search(TupleList,Key,Undefined) -> Result
[page 53] Search a list of key-value tuples for a tuple whose first element is a key.

� lookup(ETSTable,Key) -> Result
[page 53] Extract the first value associated with a key in an ETS table.

� lookup(ETSTable,Key,Undefined) -> Result
[page 53] Extract the first value associated with a key in an ETS table.

� lookup mime(ConfigDB,Suffix)
[page 53] Return the mime type associated with a specific file suffix.

� lookup mime(ConfigDB,Suffix,Undefined) -> MimeType
[page 53] Return the mime type associated with a specific file suffix.

� lookup mime default(ConfigDB,Suffix)
[page 53] Return the mime type associated with a specific file suffix or the value of
the DefaultType.

� lookup mime default(ConfigDB,Suffix,Undefined) -> MimeType
[page 53] Return the mime type associated with a specific file suffix or the value of
the DefaultType.

� message(StatusCode,PhraseArgs,ConfigDB) -> Message
[page 54] Return an informative HTTP 1.1 status string in HTML.

� month(NthMonth) -> Month
[page 54] Convert the month as an integer (1-12) to an abbreviated string.

� multi lookup(ETSTable,Key) -> Result
[page 54] Extract the values associated with a key in a ETS table.

� reason phrase(StatusCode) -> Description
[page 54] Return the description of an HTTP 1.1 status code.

� rfc1123 date() -> RFC1123Date
[page 55] Return the current date in RFC 1123 format.

� rfc1123 date(ffYYYY,MM,DDg,fHour,Min,Secggg) -> RFC1123Date
[page 55] Return the current date in RFC 1123 format.

� split(String,RegExp,N) -> SplitRes
[page 55] Split a string in N chunks using a regular expression.

12 Inets

Inets Reference Manual

� split script path(RequestLine) -> Splitted
[page 55] Split a RequestLine in a file reference to an executable and a
QueryString or a PathInfo string.

� split path(RequestLine) -> fPath,QueryStringOrPathInfog
[page 55] Split a RequestLine in a file reference and a QueryString or a
PathInfo string.

� strip(String) -> Stripped
[page 55] Returns String where the leading and trailing space and tabs has been
removed.

� suffix(FileName) -> Suffix
[page 56] Extract the file suffix from a given filename.

� to lower(String) -> ConvertedString
[page 56] Convert upper-case letters to lower-case.

� to upper(String) -> ConvertedString
[page 56] Convert lower-case letters to upper-case.

mod actions

No functions are exported.

mod alias

The following functions are exported:

� default index(ConfigDB,Path) -> NewPath
[page 60] Return a new path with the default resource or file appended.

� path(Data,ConfigDB,RequestURI) -> Path
[page 60] Return the actual file path to a URL.

� real name(ConfigDB,RequestURI,Aliases) -> Ret
[page 61] Expand a request uri using Alias config directives.

� real script name(ConfigDB,RequestURI,ScriptAliases) -> Ret
[page 61] Expand a request uri using ScriptAlias config directives.

mod auth

The following functions are exported:

� add user(UserName, Options) -> true| ferror, Reasong
[page 68] Add a user to the user database.

� add user(UserName, Password, UserData, Port, Dir) -> true | ferror,
Reasong
[page 68] Add a user to the user database.

� add user(UserName, Password, UserData, Address, Port, Dir) -> true |
ferror, Reasong
[page 68] Add a user to the user database.

� delete user(UserName,Options) -> true | ferror, Reasong
[page 68] Delete a user from the user database.

13Inets

Inets Reference Manual

� delete user(UserName, Port, Dir) -> true | ferror, Reasong
[page 68] Delete a user from the user database.

� delete user(UserName, Address, Port, Dir) -> true | ferror, Reasong
[page 68] Delete a user from the user database.

� get user(UserName,Options) -> fok, #httpd userg |ferror, Reasong
[page 68] Returns a user from the user database.

� get user(UserName, Port, Dir) -> fok, #httpd userg | ferror, Reasong
[page 68] Returns a user from the user database.

� get user(UserName, Address, Port, Dir) -> fok, #httpd userg |
ferror, Reasong
[page 68] Returns a user from the user database.

� list users(Options) -> fok, Usersg | ferror, Reasong
<name>list users(Port, Dir) -> fok, Usersg | ferror, Reasong
[page 69] List users in the user database.

� list users(Address, Port, Dir) -> fok, Usersg | ferror, Reasong
[page 69] List users in the user database.

� add group member(GroupName, UserName, Options) -> true | ferror,
Reasong
[page 69] Add a user to a group.

� add group member(GroupName, UserName, Port, Dir) -> true | ferror,
Reasong
[page 69] Add a user to a group.

� add group member(GroupName, UserName, Address, Port, Dir) -> true |
ferror, Reasong
[page 69] Add a user to a group.

� delete group member(GroupName, UserName, Options) -> true | ferror,
Reasong
[page 70] Remove a user from a group.

� delete group member(GroupName, UserName, Port, Dir) -> true |
ferror, Reasong
[page 70] Remove a user from a group.

� delete group member(GroupName, UserName, Address, Port, Dir) -> true
| ferror, Reasong
[page 70] Remove a user from a group.

� list group members(GroupName, Options) -> fok, Usersg | ferror,
Reasong
[page 70] List the members of a group.

� list group members(GroupName, Port, Dir) -> fok, Usersg | ferror,
Reasong
[page 70] List the members of a group.

� list group members(GroupName, Address, Port, Dir) -> fok, Usersg |
ferror, Reasong
[page 70] List the members of a group.

� list groups(Options) -> fok, Groupsg | ferror, Reasong
[page 70] List all the groups.

� list groups(Port, Dir) -> fok, Groupsg | ferror, Reasong
[page 70] List all the groups.

14 Inets

Inets Reference Manual

� list groups(Address, Port, Dir) -> fok, Groupsg | ferror, Reasong
[page 71] List all the groups.

� delete group(GroupName, Options) -> true | ferror,Reasong
<name>delete group(GroupName, Port, Dir) -> true | ferror, Reasong
[page 71] Deletes a group

� delete group(GroupName, Address, Port, Dir) -> true | ferror,
Reasong
[page 71] Deletes a group

� update password(Port, Dir, OldPassword, NewPassword, NewPassword) ->
ok | ferror, Reasong
[page 71] Change the AuthAcessPassword

� update password(Address,Port, Dir, OldPassword, NewPassword,
NewPassword) -> ok | ferror, Reasong
[page 71] Change the AuthAcessPassword

mod browser

The following functions are exported:

� getBrowser(AgentString)-> fBrowser,OperatingSystemg
[page 73] Extracts the browser and operating-system from AgentString

mod cgi

The following functions are exported:

� env(Info,Script,AfterScript) -> EnvString
[page 75] Return a CGI-1.1 environment variable string to be used by
open port/2.

� status code(CGIOutput) -> fok,StatusCodeg | ferror,Reasong
[page 76] Parse output from a CGI script and generates an appropriate HTTP
status code.

mod dir

No functions are exported.

mod disk log

The following functions are exported:

� error log(Socket,SocketType,ConfigDB,Date,Reason) -> ok |
no error log
[page 80] Log an error in the error log file.

� security log(User,Event) -> ok | no security log
[page 81] Log an security event in the error log file.

15Inets

Inets Reference Manual

mod esi

The following functions are exported:

� deliver(SessionID, Data) -> ok | ferror,Reasong
[page 86] Sends Data back to client..

� Module:Function(Env, Input)-> Response
[page 87] Creates a dynamic web page and return it as a list.

� Module:Function(SessionID, Env, Input)-> void
[page 87] Creates a dynamic web page and return it as a list.

mod get

No functions are exported.

mod head

No functions are exported.

mod htaccess

No functions are exported.

mod include

No functions are exported.

mod log

The following functions are exported:

� error log(Socket,SocketType,ConfigDB,Date,Reason) -> ok |
no error log
[page 100] Log an error in the a log file.

mod range

No functions are exported.

mod responsecontrol

No functions are exported.

16 Inets

Inets Reference Manual

mod security

The following functions are exported:

� list auth users(Port) -> Users | []
[page 105] List users that have authenticated within the SecurityAuthTimeout
time for a given address (if specified), port number and directory (if specified).

� list auth users(Address, Port) -> Users | []
[page 105] List users that have authenticated within the SecurityAuthTimeout
time for a given address (if specified), port number and directory (if specified).

� list auth users(Port, Dir) -> Users | []
[page 105] List users that have authenticated within the SecurityAuthTimeout
time for a given address (if specified), port number and directory (if specified).

� list auth users(Address, Port, Dir) -> Users | []
[page 105] List users that have authenticated within the SecurityAuthTimeout
time for a given address (if specified), port number and directory (if specified).

� list blocked users(Port) -> Users | []
[page 105] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� list blocked users(Address, Port) -> Users | []
[page 105] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� list blocked users(Port, Dir) -> Users | []
[page 105] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� list blocked users(Address, Port, Dir) -> Users | []
[page 105] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� block user(User, Port, Dir, Seconds) -> true | ferror, Reasong
[page 106] Block user from access to a directory for a certain amount of time.

� block user(User, Address, Port, Dir, Seconds) -> true | ferror,
Reasong
[page 106] Block user from access to a directory for a certain amount of time.

� unblock user(User, Port) -> true | ferror, Reasong
[page 106] Remove a blocked user from the block list

� unblock user(User, Address, Port) -> true | ferror, Reasong
[page 106] Remove a blocked user from the block list

� unblock user(User, Port, Dir) -> true | ferror, Reasong
[page 106] Remove a blocked user from the block list

� unblock user(User, Address, Port, Dir) -> true | ferror, Reasong
[page 106] Remove a blocked user from the block list

� event(What, Port, Dir, Data) -> ignored
[page 107] This function is called whenever an event occurs in mod security

� event(What, Address, Port, Dir, Data) -> ignored
[page 107] This function is called whenever an event occurs in mod security

mod trace

No functions are exported.

17Inets

inets Inets Reference Manual

inets
Application

Inets is a container for Internet clients and servers. Currently, an HTTP server and an
FTP client has been incorporated in Inets. The HTTP server is an efficient
implementation of HTTP 1.1 as defined in RFC 2616, namely a Web server.

Configuration

It is possible to start a number of Web servers in an embedded system using the
services config parameter from an application config file. A minimal application config
file (from now on referred to as inets.config) starting two HTTP servers typically
looks as follows:

[finets,
[fservices,[fhttpd,"/var/tmp/server root/conf/8888.conf"g,

fhttpd,"/var/tmp/server root/conf/8080.conf"g]g]g].

A server config file is specified for each HTTP server to be started. The config file syntax
and semantics is described in httpd(3) [page 27].

inets.config can be tested by copying the example server root to a specific installation
directory, as described in httpd(3) [page 30]. The example below shows a manual start
of an Erlang node, using inets.config, and the start of two HTTP servers listening
listen on ports 8888 and 8080.

$ erl -config ./inets
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> application:start(inets).
ok

SEE ALSO

httpd(3) [page 27]

18 Inets

Inets Reference Manual ftp

ftp
Erlang Module

The ftp module implements a client for file transfer according to a subset of the File
Transfer Protocol (see RFC 959).

The following is a simple example of an ftp session, where the user guest with
password password logs on to the remote host erlang.org, and where the file
appl.erl is transferred from the remote to the local host. When the session is opened,
the current directory at the remote host is /home/guest, and /home/fred at the local
host. Before transferring the file, the current local directory is changed to
/home/eproj/examples, and the remote directory is set to
/home/guest/appl/examples.

1> fok, Pidg = ftp:open("erlang.org").
fok,<0.22.0>g
2> ftp:user(Pid, "guest", "password").
ok
3> ftp:pwd(Pid).
fok, "/home/guest"g
4> ftp:cd(Pid, "appl/examples").
ok
5> ftp:lpwd(Pid).
fok, "/home/fred"g.
6> ftp:lcd(Pid, "/home/eproj/examples").
ok
7> ftp:recv(Pid, "appl.erl").
ok
8> ftp:close(Pid).
ok

In addition to the ordinary functions for receiving and sending files (see recv/2, recv/3,
send/2 and send/3) there are functions for receiving remote files as binaries (see
recv bin/2) and for sending binaries to to be stored as remote files (see send bin/3).

There is also a set of functions for sending contiguous parts of a file to be stored in a
remote file (see send chunk start/2, send chunk/2 and send chunk end/1).

The particular return values of the functions below depend very much on the
implementation of the FTP server at the remote host. In particular the results from ls
and nlist varies. Often real errors are not reported as errors by ls, even if for instance
a file or directory does not exist. nlist is usually more strict, but some
implementations have the peculiar behaviour of responding with an error, if the request
is a listing of the contents of directory which exists but is empty.

19Inets

ftp Inets Reference Manual

Exports

account(Pid,Account) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Account = string()
� Reason = eacct | econn

If an account is needed for an operation set the account with this operation.

append(Pid, LocalFile [, RemoteFile]) -> ok | ferror, Reasong

Types:

� Pid = pid()
� LocalFile = RemoteFile = string()
� Reason = epath | elogin | econn | etnospc | epnospc | efnamena

Transfers the file LocalFile to the remote server. If RemoteFile is specified, the name
of the remote file that the file will be appended to is set to RemoteFile; otherwise the
name is set to LocalFile If the file does not exists the file will be created.

append bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()()
� RemoteFile = string()
� Reason = epath | elogin | enotbinary | econn | etnospc | epnospc | efnamena

Transfers the binary Bin to the remote server and append it to the file RemoteFile. If
the file does not exists it will be created.

append chunk(Pid, Bin) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� Reason = elogin | echunk | enotbinary | econn

Transfer the chunk Bin to the remote server, which append it into the file specified in
the call to append chunk start/2.

Note that for some errors, e.g. file system full, it is neccessery to to call
append chunk end to get the proper reason.

append chunk start(Pid, File) -> ok | ferror, Reasong

Types:

� Pid = pid()
� File = string()
� Reason = epath | elogin | econn

20 Inets

Inets Reference Manual ftp

Start the transfer of chunks for appending to the file File at the remote server. If the
file does not exists it will be created.

append chunk end(Pid) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Reason = elogin | echunk | econn | etnospc | epnospc | efnamena

Stops transfer of chunks for appending to the remote server. The file at the remote
server, specified in the call to append chunk start/2 is closed by the server.

cd(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = epath | elogin | econn

Changes the working directory at the remote server to Dir.

close(Pid) -> ok

Types:

� Pid = pid()

Ends the ftp session.

delete(Pid, File) -> ok | ferror, Reasong

Types:

� Pid = pid()
� File = string()
� Reason = epath | elogin | econn

Deletes the file File at the remote server.

formaterror(Tag) -> string()

Types:

� Tag = ferror, atom()g | atom()

Given an error return value ferror, Reasong, this function returns a readable string
describing the error.

lcd(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = epath

Changes the working directory to Dir for the local client.

lpwd(Pid) -> fok, Dirg

21Inets

ftp Inets Reference Manual

Types:

� Pid = pid()

Returns the current working directory at the local client.

ls(Pid [, Dir]) -> fok, Listingg | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Listing = string()
� Reason = epath | elogin | econn

Returns a listing of the contents of the remote current directory (ls/1) or the specified
directory (ls/2). The format of Listing is operating system dependent (on UNIX it is
typically produced from the output of the ls -l shell command).

mkdir(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = epath | elogin | econn

Creates the directory Dir at the remote server.

nlist(Pid [, Dir]) -> fok, Listingg | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Listing = string()
� Reason = epath | elogin | econn

Returns a listing of the contents of the remote current directory (nlist/1) or the
specified directory (nlist/2). The format of Listing is a stream of file names, where
each name is separated by <CRLF> or <NL>. Contrary to the ls function, the
purpose of nlist is to make it possible for a program to automatically process file name
information.

open(Host [, Port] [, Flags]) -> fok, Pidg | ferror, Reasong

open(foption list,Option listg) -> fok, Pidg | ferror, Reasong

Types:

� Host = string() | ip address()
� ip address() = fbyte(), byte(), byte(), byte()g
� byte() = 0 | 1 | ... | 255
� Port = integer()
� Flags = [Flag]
� Flag = verbose | debug
� Pid = pid()
� Reason = ehost

22 Inets

Inets Reference Manual ftp

� Option list=[Options]
� Options=fhost,Hostg|fport,Portg|fflags,Flagsg|ftimeout,Timeoutg
� Timeout=integer()

Opens a session with the ftp server at Host. The argument Host is either the name of
the host, its IP address in dotted decimal notation (e.g. "150.236.14.136"), or a tuple
of arity 4 (e.g. f150, 236, 14, 136g).

If Port is supplied, a connection is attempted using this port number instead of the
default (21).

If the atom verbose is included in Flags, response messages from the remote server
will be written to standard output.

The file transfer type is set to binary when the session is opened.

The current local working directory (cf. lpwd/1) is set to the value reported by
file:get cwd/1. the wanted local directory.

The timeout value is default set to 60000 milliseconds.

The return value Pid is used as a reference to the newly created ftp client in all other
functions. The ftp client process is linked to the caller.

pwd(Pid) -> fok, Dirg | ferror, Reasong

Types:

� Pid = pid()
� Reason = elogin | econn

Returns the current working directory at the remote server.

recv(Pid, RemoteFile [, LocalFile]) -> ok | ferror, Reasong

Types:

� Pid = pid()
� RemoteFile = LocalFile = string()
� Reason = epath | elogin | econn

Transfer the file RemoteFile from the remote server to the the file system of the local
client. If LocalFile is specified, the local file will be LocalFile; otherwise it will be
RemoteFile.

recv bin(Pid, RemoteFile) -> fok, Bing | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� RemoteFile = string()
� Reason = epath | elogin | econn

Transfers the file RemoteFile from the remote server and receives it as a binary.

rename(Pid, Old, New) -> ok | ferror, Reasong

Types:

� Pid = pid()
� CurrFile = NewFile = string()

23Inets

ftp Inets Reference Manual

� Reason = epath | elogin | econn

Renames Old to New at the remote server.

rmdir(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = epath | elogin | econn

Removes directory Dir at the remote server.

send(Pid, LocalFile [, RemoteFile]) -> ok | ferror, Reasong

Types:

� Pid = pid()
� LocalFile = RemoteFile = string()
� Reason = epath | elogin | econn | etnospc | epnospc | efnamena

Transfers the file LocalFile to the remote server. If RemoteFile is specified, the name
of the remote file is set to RemoteFile; otherwise the name is set to LocalFile.

send bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()()
� RemoteFile = string()
� Reason = epath | elogin | enotbinary | econn | etnospc | epnospc | efnamena

Transfers the binary Bin into the file RemoteFile at the remote server.

send chunk(Pid, Bin) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� Reason = elogin | echunk | enotbinary | econn

Transfer the chunk Bin to the remote server, which writes it into the file specified in the
call to send chunk start/2.

Note that for some errors, e.g. file system full, it is neccessery to to call send chunk end
to get the proper reason.

send chunk start(Pid, File) -> ok | ferror, Reasong

Types:

� Pid = pid()
� File = string()
� Reason = epath | elogin | econn

Start transfer of chunks into the file File at the remote server.

24 Inets

Inets Reference Manual ftp

send chunk end(Pid) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Reason = elogin | echunk | econn | etnospc | epnospc | efnamena

Stops transfer of chunks to the remote server. The file at the remote server, specified in
the call to send chunk start/2 is closed by the server.

type(Pid, Type) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Type = ascii | binary
� Reason = etype | elogin | econn

Sets the file transfer type to ascii or binary. When an ftp session is opened, the
transfer type is set to binary.

user(Pid, User, Password) -> ok | ferror, Reasong

Types:

� Pid = pid()
� User = Password = string()
� Reason = euser | econn

Performs login of User with Password.

user(Pid, User, Password,Account) -> ok | ferror, Reasong

Types:

� Pid = pid()
� User = Password = string()
� Reason = euser | econn

Performs login of User with Passwordto the acccount specified by Account .

25Inets

ftp Inets Reference Manual

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by
formaterror/1 are as follows:

echunk Synchronisation error during chunk sending.
A call has been made to send chunk/2 or send chunk end/1, before a call to
send chunk start/2; or a call has been made to another transfer function during
chunk sending, i.e. before a call to send chunk end/1.

eclosed The session has been closed.

econn Connection to remote server prematurely closed.

ehost Host not found, FTP server not found, or connection rejected by FTP server.

elogin User not logged in.

enotbinary Term is not a binary.

epath No such file or directory, or directory already exists, or permission denied.

etype No such type.

euser User name or password not valid.

etnospc Insufficient storage space in system [452].

epnospc Exceeded storage allocation (for current directory or dataset) [552].

efnamena File name not allowed [553].

SEE ALSO

file, filename, J. Postel and J. Reynolds: File Transfer Protocol (RFC 959).

26 Inets

Inets Reference Manual httpd

httpd
Erlang Module

HTTP (Hypertext Transfer Protocol) is an application-level protocol with the lightness
and speed necessary for distributed, collaborative and hyper-media information systems.
The httpd module handles HTTP requests as described in RFC 2616 with a few
exceptions such as Gateway and Proxy functionality. The same is true for servers
written by NCSA and others.

The server implements numerous features such as SSL [page 43] (Secure Sockets
Layer), ESI [page 82] (Erlang Scripting Interface), CGI [page 74] (Common Gateway
Interface), User Authentication [page 62](using Mnesia, dets or plain text database),
Common Logfile Format (with [page 78] or without [page 98] disk log(3) support),
URL Aliasing [page 59], Action Mappings [page 57], Directory Listings [page 77] and
SSI [page 95] (Server-Side Includes).

The configuration [page 27] of the server is done using Apache1-style configuration
directives. The goal is to be plug-in compatible with Apache.

All server functionality has been implemented using an especially crafted server API;
EWSAPI [page 34] (Erlang Web Server API). This API can be used to advantage by all
who wants to enhance the server core functionality, for example custom logging and
authentication.

RUN-TIME CONFIGURATION

All functionality in the server can be configured using Apache-style configuration
directives stored in a configuration file. Take a look at the example config files in the
conf directory2 of the server root for a complete understanding.

An alphabetical list of all config directives:

� AccessFileName [page 90]

� Action [page 57]

� Alias [page 59]

� allow [page 66]

� deny [page 66]

� AuthName [page 65]

� AuthGroupFile [page 65]

� AuthUserFile [page 64]

� BindAddress [page 43]

� DefaultType [page 44]
1URL: http://www.apache.org
2In Windows: %INETS ROOT%\examples\server root\conf\. In UNIX: $INETS ROOT/examples/server root/conf/.

27Inets

httpd Inets Reference Manual

� <Directory> [page 62]

� DirectoryIndex [page 59]

� DocumentRoot [page 44]

� ErlScriptAlias [page 85]

� ErlScriptNoCache [page 85]

� ErlScriptTimeout [page 85]

� ErrorLog [page 98]

� ErrorDiskLog [page 79]

� ErrorDiskLogSize [page 79]

� EvalScriptAlias [page 86]

� KeepAlive [page 44]

� KeepAliveTimeout [page 44]

� MaxBodySize [page 45]

� MaxBodyAction [page 45]

� MaxClients [page 45]

� MaxHeaderSize [page 46]

� MaxHeaderAction [page 45]

� MaxKeepAliveRequest [page 46]

� Modules [page 46]

� Port [page 46]

� require [page 67]

� SecurityAuthTimeout [page 105]

� SecurityBlockTime [page 104]

� SecurityCallbackModule [page 105]

� SecurityDataFile [page 103]

� SecurityDiskLog [page 79]

� SecurityDiskLogSize [page 79]

� SecurityFailExpireTime [page 104]

� SecurityLog [page 99]

� SecurityMaxRetries [page 104]

� ServerAdmin [page 47]

� ServerName [page 47]

� ServerRoot [page 47]

� Script [page 57]

� ScriptAlias [page 60]

� ScriptNoCache [page 74]

� ScriptTimeout [page 75]

� SocketType [page 47]

� SSLCACertificateFile [page 48]

� SSLCertificateFile [page 48]

� SSLCertificateKeyFile [page 48]

28 Inets

Inets Reference Manual httpd

� SSLCiphers [page 49]

� SSLPasswordCallbackFunction [page 49]

� SSLPasswordCallbackModule [page 49]

� SSLVerifyClient [page 48]

� SSLVerifyDepth [page 49]

� KeepAlive [page 44]

� KeepAliveTimeout [page 44]

� TransferLog [page 99]

� TransferDiskLog [page 80]

� TransferDiskLogSize [page 80]

EWSAPI MODULES

All server functionality has been implemented using EWSAPI (Erlang Web Server API)
modules. The following modules are available:

httpd core [page 42] Core features.

mod actions [page 57] Filetype/method-based script execution.

mod alias [page 59] Aliases and redirects.

mod auth [page 62] User authentication using text files, mnesia or dets.

mod browser [page 73] Tries to recognize the clients browser and operating system.

mod cgi [page 74] Invoking of CGI scripts.

mod dir [page 77] Basic directory handling.

mod disk log [page 78] Standard logging in the Common Logfile Format using
disk log(3).

mod esi [page 82] Efficient Erlang Scripting.

mod get [page 88] Handle HTTP GET Method.

mod head [page 89] Handle HTTP HEAD Method.

mod htacceess [page 90] User configurable user authentication.

mod include [page 95] Server-parsed documents.

mod log [page 98] Standard logging in the Common Logfile Format using text files.

mod range [page 101] Handles GET requests for parts of files.

mod responsecontrol [page 102] Controls the restrictions in the request i.e. If-Match,
If-Range,If-Modified-Since, and take the appropriate action.

mod security [page 103] Filter authenticated requests.

mod trace [page 108] Handles. HTTP TRACE Method

Each module has a man page that further describe it’s functionality.

The Modules [page 46] config directive can be used to alter the server behavior, by alter
the EWSAPI Module Sequence. An example module sequence can be found in the
example config directory. If this needs to be altered read the EWSAPI Module
Interaction [page 39] section below.

29Inets

httpd Inets Reference Manual

Exports

start()

start(ConfigFile) -> ServerRet

start link()

start link(ConfigFile) -> ServerRet

Types:

� ConfigFile = string()
� ServerRet = fok,Pidg | ignore | ferror,EReasong | fstop,SReasong
� Pid = pid()
� EReason = falready started, Pidg | term()
� SReason = string()

start/1 and start link/1 starts a server as specified in the given ConfigFile. The
ConfigFile supports a number of config directives specified below.

start/0 and start/0 starts a server as specified in a hard-wired config file, that is
start("/var/tmp/server root/conf/8888.conf"). Before utilizing start/0 or
start link/0, copy the example server root3 to a specific installation directory4 and
you have a server running in no time.

If you copy the example server root to the specific installation directory it is
furthermore easy to start an SSL enabled server, that is
start("/var/tmp/server root/conf/ssl.conf").

restart()

restart(Port) -> ok | ferror,Reasong

restart(ConfigFile) -> ok | ferror,Reasong

restart(Address,Port) -> ok | ferror,Reasong

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� ConfigFile = string()
� Reason = term()

restart restarts the server and reloads its config file.

The follwing directives cannot be changed: BindAddress, Port and SocketType. If these
should be changed, then a new server should be started instead.

Note:
Before the restart function can be called the server must be blocked [page 31].
After restart has been called, the server must be unblocked [page 32].

stop()

3In Windows: %INETS ROOT%\examples\server root\. In UNIX: $INETS ROOT/examples/server root/.
4In Windows: X:\var\tmp\. In UNIX: /var/tmp/.

30 Inets

Inets Reference Manual httpd

stop(Port) -> ServerRet

stop(ConfigFile) -> ServerRet

stop(Address,Port) -> ServerRet

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� ConfigFile = string()
� ServerRet = ok | not started

stop/2 stops the server which listens to the specified Port on Address.
stop(integer()) stops a server which listens to a specific Port. stop(string())
extracts BindAddress and Port from the config file and stops the server which listens to
the specified Port on Address. stop/0 stops a server which listens to port 8888, that is
stop(8888).

block() -> ok | ferror,Reasong

block(Port) -> ok | ferror,Reasong

block(ConfigFile) -> ok | ferror,Reasong

block(Address,Port) -> ok | ferror,Reasong

block(Port,Mode) -> ok | ferror,Reasong

block(ConfigFile,Mode) -> ok | ferror,Reasong

block(Address,Port,Mode) -> ok | ferror,Reasong

block(ConfigFile,Mode,Timeout) -> ok | ferror,Reasong

block(Address,Port,Mode,Timeout) -> ok | ferror,Reasong

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� ConfigFile = string()
� Mode = disturbing | non disturbing
� Timeout = integer()
� Reason = term()

This function is used to block a server. The blocking can be done in two ways,
disturbing or non-disturbing.

By performing a disturbing block, the server is blocked forcefully and all ongoing
requests are terminated. No new connections are accepted. If a timeout time is given
then on-going requests are given this much time to complete before the server is
forcefully blocked. In this case no new connections is accepted.

A non-disturbing block is more gracefull. No new connections are accepted, but the
ongoing requests are allowed to complete. If a timeout time is given, it waits this long
before giving up (the block operation is aborted and the server state is once more
not-blocked)

Default mode is disturbing.

Default port is 8888

unblock() -> ok | ferror,Reasong

unblock(Port) -> ok | ferror,Reasong

unblock(ConfigFile) -> ok | ferror,Reasong

31Inets

httpd Inets Reference Manual

unblock(Address,Port) -> ok | ferror,Reasong

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� ConfigFile = string()
� Reason = term()

Unblocks a server. If the server is already unblocked this is a no-op. If a block is
ongoing, then it is aborted (this will have no effect on ongoing requests).

parse query(QueryString) -> ServerRet

Types:

� QueryString = string()
� ServerRet = [fKey,Valueg]
� Key = Value = string()

parse query/1 parses incoming data to erl and eval scripts (See mod esi(3) [page
82]) as defined in the standard URL format, that is ’+’ becomes ’space’ and decoding of
hexadecimal characters (%xx).

ESWAPI CALLBACK FUNCTIONS

Exports

Module:do(Info)-> fproceed, OldDatag | fproceed, NewDatag | fbreak, NewDatag | done

Types:

� Info = mod()
� OldData = list()
� NewData = [fresponse,fStatusCode,Bodygg] | [fresponse,fresponse,Head,Body2gg]
| [fresponse,falready sent,Statuscode,Sizeg]

� StausCode = integer()
� Body = String
� Head = [HeaderOption]
� HeaderOption = fKey, Valueg | fcode, StatusCodeg
� Key = allow | cache control | content MD5 | content encoding | content encoding
| content language,Value | content length | content location | content range |
content type | date | etag | expires | last modified | location | pragma | retry after
| server | trailer | transfer encoding

� Value = string()
� Body2 = fFun,Argg | Body | nobody
� Fun = fun(Arg)->sent| close | Body
� Arg = [term()]

32 Inets

Inets Reference Manual httpd

Info is a record of type mod, this record is defined in httpd.hrl see EWSAPI Module
programming [page 34] for more information.

When a valid request reaches httpd it calls do/1 in each module defined by the Modules
configuration directive. The function may generate data for other modules or a response
that can be sent back to the client.

The field data in Info is a list. This list will be the list returned from the from the last
call to do/1.

Body is the body of the http-response that will be sent back to the client an appropriate
header will be appended to the message. StatusCode will be the status code of the
response see RFC2616 for the appropriate values.

Head is a key value list of HTTP header fields. the server will construct a HTTP header
from this data. See RFC 2616 for the appropriate value for each header field. If the
client is a HTTP/1.0 client then the server will filter the list so that only HTTP/1.0
header fields will be sent back to the client.

If Body2 is returned and equal to fFun,Argg The Web server will try apply/2. on Fun
with Arg as argument and excpect that the fun either returns a list (Body) that is a
HTTP-repsonse or the atom sent if the HTTP-response is sent back to the client. If
close is returned from the fun something has gone wrong and the server will signal this
to the client by closing the connection.

Module:load(Line, Context)-> eof | ok | fok, NewContextg | fok, NewContext,
Directiveg | fok, NewContext, DirectiveListg | ferror, Reasong

Types:

� Line = string()
� Context = NewContext = DirectiveList = [Directive]
� Directive = fDirectiveKey , DirectiveValueg
� DirectiveKey = DirectiveValue = term()
� Reason = term()

load/2 takes a row Line from the configuration file and tries to convert it to a key value
tuple. If a directive is dependent on other directives, the directive may create a context.
If the directive is not dependent on other directives return fok, [], Directiveg,
otherwise return a new context, that is fok, NewContextg or fok, Context Directiveg.
If ferror, Reasong is returned the configuration directive is assumed to be invalid.

Module:store(fDirectiveKey, DirectiveValueg, DirectiveList)-> fok, fDirectiveKey,
NewDirectiveValuegg | fok, [fok, fDirectiveKey, NewDirectiveValuegg |
ferror, Reasong

Types:

� DirectiveList = [fDirectiveKey, DirectiveValueg]
� DirectiveKey = DirecitveValue = term()
� Context = NewContext = DirectiveList = [Directive]
� Directive = fKey , Valueg
� Reason = term()

33Inets

httpd Inets Reference Manual

When all rows in the configuration file is read the function store/2 is called for each
configuration directive. This makes it possible for a directive to alter other configuration
directives. DirectiveList is a list of all configuration directives read in from load. If a
directive may update other configuration directives then use this function.

Module:remove(ConfigDB)-> ok | ferror, Reasong

Types:

� ConfigDB = ets table()
� Reason = term()

When httpd shutdown it will try to execute remove/1 in each ewsapi module. The
ewsapi programmer may use this to close ets tables, save data, or close down
background processes.

EWSAPI MODULE PROGRAMMING

Note:
The Erlang/OTP programming knowledge required to undertake an EWSAPI module
is quite high and is not recommended for the average server user. It is best to only use
it to add core functionality, e.g. custom authentication or a RFC 21095

implementation.

EWSAPI should only be used to add core functionality to the server. In order to
generate dynamic content, for example on-the-fly generated HTML, use the standard
CGI [page 74] or ESI [page 82] facilities instead.

As seen above the major part of the server functionality has been realized as EWSAPI
modules (from now on only called modules). If you intend to write your own server
extension start with examining the standard modules6 mod *.erl and note how to they
are configured in the example config directory7.

Each module implements do/1 (mandatory), load/2, store/2 and remove/1. The
latter functions are needed only when new config directives are to be introduced, see
EWSAPI Module Configuration [page 37].

A module can choose to export functions to be used by other modules in the EWSAPI
Module Sequence (See Modules [page 46] config directive). This should only be done
as an exception! The goal is to keep each module self-sustained thus making it easy to
alter the EWSAPI Module Sequence without any unneccesary module dependencies.

A module can furthermore use data generated by previous modules in the EWSAPI
Module Sequence or generate data to be used by consecutive EWSAPI modules. This is
made possible due to an internal list of key-value tuples, see EWSAPI Module
Interaction [page 39].

6In Windows: %INETS ROOT%\src\. In UNIX: $INETS ROOT/src/.
7In Windows: %INETS ROOT%\examples\server root\conf\. In UNIX: $INETS ROOT/examples/server root/conf/.

34 Inets

Inets Reference Manual httpd

Note:
The server executes do/1 (using apply/1) for each module listed in the Modules
[page 46] config directive. do/1 takes the record mod as an argument, as described
below. See httpd.hrl8:

-record(mod,fdata=[],
socket type=ip comm,
socket,
config db,
method,
absolute uri,
request uri,
http version,
request line,
parsed header=[],
entity body,
connectiong).

The fields of the mod record has the following meaning:

data Type [fInteractionKey,InteractionValueg] is used to propagate data
between modules (See EWSAPI Module Interaction [page 39] below). Depicted
interaction data() in function type declarations.

socket type socket type(), Indicates whether it is a ip socket or a ssl socket.

socket The actual socket in ip comm or ssl format depending on the socket type.

config db The config file directives stored as key-value tuples in an ETS-table.
Depicted config db() in function type declarations.

method Type "GET" | "POST" | "HEAD" | "TRACE", that is the HTTP method.

absolute uri If the request is a HTTP/1.1 request the URI might be in the absolute
URI format. In that case httpd will save the absolute URI in this field. An Example
of an absolute URI could
be"http://ServerName:Part/cgi-bin/find.pl?person=jocke"

request uri The Request-URI as defined in RFC 1945, for example
"/cgi-bin/find.pl?person=jocke"

http version The HTTP version of the request, that is “HTTP/0.9”, “HTTP/1.0”, or
“HTTP/1.1”.

request line The Request-Line as defined in RFC 1945, for example "GET
/cgi-bin/find.pl?person=jocke HTTP/1.0".

parsed header Type [fHeaderKey,HeaderValueg], parsed header contains all
HTTP header fields from the HTTP-request stored in a list as key-value tuples. See
RFC 2616 for a listing of all header fields. For example the date field would be
stored as: f"date","Wed, 15 Oct 1997 14:35:17 GMT"g. RFC 2616 defines
that HTTP is a case insensitive protocol and the header fields may
be in lowercase or upper case. Httpd will ensure that all header
field names are in lowe case.

entity body The Entity-Body as defined in RFC 2616, for example data sent from a
CGI-script using the POST method.

35Inets

httpd Inets Reference Manual

connection true | false If set to true the connection to the client is a persistent
connections and will not be closed when the request is served.

A do/1 function typically uses a restricted set of the mod record’s fields to do its stuff
and then returns a term depending on the outcome, The outcome is either
fproceed,NewDatag | fbreak,NewDatag | done. Which has the following meaning:

fproceed,OldDatag Proceed to next module as nothing happened. OldData refers to
the data field in the incoming mod record.

fproceed,[fresponse,fStatusCode,Responsegg|OldData]g A generated response
(Response) should be sent back to the client including a status code (StatusCode)
as defined in RFC 2616.

fproceed,[fresponse,fresponse,Head,Bodygg|OldData]g Head is a list of
key/value tuples. Each HTTP-header field that will be in the response header must
be in the list. The following atoms are allowed header field keys:

code,
allow,
cache control,
content MD5,
content encoding,
content encoding,
content language,
content length,
content location,
content range,
content type,
date,
etag,
expires,
last modified
location,
pragma,
retry after,
server,
trailer,
transfer encoding,

The key code is a special case since the value to this key is a integer and not a
string. The value will be used as status code for the response.
The benefit of this method is that the same request may be generated for both
HTTP/1.1 and HTTP/1.0 clients since the list of header fields will be filtered due
to the version of the request. Body is either the tuple fFun,Argg a list or the atom
nobody. If Body is fFun,Argg Fun is assumed to be a fun that returns either close,
sent or fok,Bodyg. If close is returned the connection to the client will be closed.
If sent is returned the connection to the client will be maintained if the connection
is persitent. If fok,Bodyg is returned the Body is sent back to the client as the
response body.
This is the preffered response since it makes it a lot easier to generate a response
that can be sent back to both HTTP/1.0 and HTTP/1.1 clients. A warning might
be in place that if content length is not send the client might hang if the body is
not send with chunked encoding.

36 Inets

Inets Reference Manual httpd

fproceed,[fresponse,falready sent,StatusCode,Sizegg|OldData]g A generated
response has already manually been sent back to the client, using the socket
provided by the mod record (see above), including a valid status code (StatusCode)
as defined in RFC 1945 and the size (Size) of the response in bytes.

fproceed,[fstatus,fStatusCode,PhraseArgs,Reasonggg|OldData]g A generic
status message should be sent back to the client (if the next module in the
EWSAPI Module Sequence does not think otherwise!) including at status code
(StatusCode) as defined in RFC 1945, a term describing how the client will be
informed (PhraseArgs) and a reason (Reason) to why it happened. Read more
about PhraseArgs in httpd util:message/3 [page 54].

fbreak,NewDatag Has the same semantics as proceed above but with one important
exception; No more modules in the EWSAPI Module Sequence are executed. Use
with care!

done No more modules in the EWSAPI Module Sequence are executed and no
response should be sent back to the client. If no response is sent back to the client,
using the socket provided by the mod record, the client will typically get a
“Document contains no data...”.

Warning:
Each consecutive module in the EWSAPI Module Sequence can choose to ignore
data returned from the previous module either by trashing it or by “enhancing” it.

Keep in mind that there exist numerous utility functions to help you as an EWSAPI
module programmer, e.g. nifty lookup of data in ETS-tables/key-value lists and socket
utilities. You are well advised to read httpd util(3) [page 51] and httpd socket(3) [page
50].

EWSAPI MODULE CONFIGURATION

An EWSAPI module can define new config directives thus making it configurable for a
server end-user. This is done by implementing load/2 (mandatory), store/2 and
remove/1.

The config file is scanned twice (load/2 and store/2) and a cleanup is done
(remove/1) during server shutdown. The reason for this is: “A directive A can be
dependent upon another directive B which occur either before or after directive A in
the config file”. If a directive does not depend upon other directives; store/2 can be left
out. Even remove/1 can be left out if neither load/2 nor store/2 open files or create
ETS-tables etc.

load/2 takes two arguments. The first being a row from the config file, that is a config
directive in string format such as "Port 80". The second being a list of key-value tuples
(which can be empty!) defining a context. A context is needed because there are
directives which defines inner contexts, that is directives within directives, such as
<Directory> [page 62]. load/2 is expected to return:

eof End-of-file found.

ok Ignore the directive.

37Inets

httpd Inets Reference Manual

fok,ContextListg Introduces a new context by adding a tuple to the context list or
reverts to a previous context by removing a tuple from the context list. See
<Directory> [page 62] which introduces a new context and </Directory> [page
62] which reverts to a previous one (Advice: Look at the source code for
mod auth:load/2).

fok,ContextList,fDirectiveKey,DirectiveValuegg Introduces a new context (see
above) and defines a new config directive, e.g. fport,80g.

fok,ContextList,[fDirectiveKey,DirectiveValueg]g Introduces a new context
(see above) and defines a several new config directives, e.g.
[fport,80g,ffoo,ong].

ferror,Reasong An invalid directive.

An example of a load function from mod log.erl:

load([$T,$r,$a,$n,$s,$f,$e,$r,$L,$o,$g,$ |TransferLog],[]) ->
fok,[],ftransfer log,httpd conf:clean(TransferLog)gg;

load([$E,$r,$r,$o,$r,$L,$o,$g,$ |ErrorLog],[]) ->
fok,[],ferror log,httpd conf:clean(ErrorLog)gg.

store/2 takes two arguments. The first being a tuple describing a directive
(fDirectiveKey,DirectiveValueg) and the second argument a list of tuples describing
all directives ([fDirectiveKey,DirectiveValueg]). This makes it possible for
directive A to be dependent upon the value of directive B. store/2 is expected to
return:

fok,fDirectiveKey,NewDirectiveValuegg Introduces a new value for the specified
directive replacing the old one generated by load/2.

fok,[fDirectiveKey,NewDirectiveValueg]g Introduces new values for the specified
directives replacing the old ones generated by load/2.

ferror,Reasong An invalid directive.

An example of a store function from mod log.erl:

store(ferror log,ErrorLogg,ConfigList) ->
case create log(ErrorLog,ConfigList) of

fok,ErrorLogStreamg ->
fok,ferror log,ErrorLogStreamgg;

ferror,Reasong ->
ferror,Reasong

end.

remove/1 takes the ETS-table representation of the config-file as input. It is up to you
to cleanup anything you opened or created in load/2 or store/2. remove/1 is expected
to return:

ok If the cleanup was successful.

ferror,Reasong If the cleanup failed.

A naive example from mod log.erl:

38 Inets

Inets Reference Manual httpd

remove(ConfigDB) ->
lists:foreach(fun([Stream]) -> file:close(Stream) end,

ets:match(ConfigDB,ftransfer log,’$1’g)),
lists:foreach(fun([Stream]) -> file:close(Stream) end,

ets:match(ConfigDB,ferror log,’$1’g)),
ok.

EWSAPI MODULE INTERACTION

Modules in the EWSAPI Module Sequence [page 46] uses the mod record’s data field to
propagate responses and status messages, as seen above. This data type can be used in a
more versatile fashion. A module can prepare data to be used by subsequent EWSAPI
modules, for example the mod alias [page 59] module appends the tuple
freal name,string()g to inform subsequent modules about the actual file system
location for the current URL.

Before altering the EWSAPI Modules Sequence you are well advised to observe what
types of data each module uses and propagates. Read the “EWSAPI Interaction” section
for each module.

An EWSAPI module can furthermore export functions to be used by other EWSAPI
modules but also for other purposes, for example mod alias:path/3 [page 61] and
mod auth:add user/5 [page 68]. These functions should be described in the module
documentation.

Note:
When designing an EWSAPI module try to make it self-contained, that is avoid being
dependent on other modules both concerning exchange of interaction data and the
use of exported functions. If you are dependent on other modules do state this
clearly in the module documentation!

You are well advised to read httpd util(3) [page 51] and httpd conf(3) [page 40].

BUGS

If a Web browser connect itself to an SSL enabled server using a URL not starting with
https:// the server will hang due to an ugly bug in the SSLeay package!

SEE ALSO

httpd core(3) [page 42], httpd conf(3) [page 40], httpd socket(3) [page 18],
httpd util(3) [page 51], inets(6) [page 18],

39Inets

httpd conf Inets Reference Manual

httpd conf
Erlang Module

This module provides the EWSAPI programmer with utility functions for adding
run-time configuration directives.

Warning:
The current implementation of EWSAPI is under review and feedback is welcomed.

Exports

check enum(EnumString,ValidEnumStrings) -> Result

Types:

� EnumString = string()
� ValidEnumStrings = [string()]
� Result = fok,atom()g | ferror,not validg

check enum/2 checks if EnumString is a valid enumeration of ValidEnumStrings in
which case it is returned as an atom.

clean(String) -> Stripped

Types:

� String = Stripped = string()

clean/1 removes leading and/or trailing white spaces from String.

custom clean(String,Before,After) -> Stripped

Types:

� Before = After = regexp()
� String = Stripped = string()

custom clean/3 removes leading and/or trailing white spaces and custom characters
from String. Before and After are regular expressions, as defined in regexp(3),
describing the custom characters.

is directory(FilePath) -> Result

Types:

� FilePath = string()

40 Inets

Inets Reference Manual httpd conf

� Result = fok,Directoryg | ferror,Reasong
� Directory = string()
� Reason = string() | enoent | eaccess | enotdir | FileInfo
� FileInfo = File info record

is directory/1 checks if FilePath is a directory in which case it is returned. Please
read file(3) for a description of enoent, eaccess and enotdir. The definition of the
file info record can be found by including file.hrl from the kernel application, see
file(3).

is file(FilePath) -> Result

Types:

� FilePath = string()
� Result = fok,Fileg | ferror,Reasong
� File = string()
� Reason = string() | enoent | eaccess | enotdir | FileInfo
� FileInfo = File info record

is file/1 checks if FilePath is a regular file in which case it is returned. Read
file(3) for a description of enoent, eaccess and enotdir. The definition of the file
info record can be found by including file.hrl from the kernel application, see file(3).

make integer(String) -> Result

Types:

� String = string()
� Result = fok,integer()g | ferror,nomatchg

make integer/1 returns an integer representation of String.

SEE ALSO

httpd(3) [page 27]

41Inets

httpd core Inets Reference Manual

httpd core
Erlang Module

This manual page summarize the core features of the server not being implemented as
EWSAPI modules. The following core config directives are described:

� BindAddress [page 43]

� DefaultType [page 44]

� DocumentRoot [page 44]

� MaxBodyAction [page 45]

� MaxBodySize [page 45]

� MaxClients [page 45]

� KeepAlive [page 44]

� KeepAliveTimeout [page 44]

� MaxHeaderAction [page 45]

� MaxHeaderSize [page 46]

� MaxKeepAliveRequest [page 46]

� Modules [page 46]

� Port [page 46]

� ServerAdmin [page 47]

� ServerName [page 47]

� ServerRoot [page 47]

� SocketType [page 47]

� SSLCACertificateFile [page 48]

� SSLCertificateFile [page 48]

� SSLCertificateKeyFile [page 48]

� SSLCiphers [page 49]

� SSLPasswordCallbackFunction [page 49]

� SSLPasswordCallbackModule [page 49]

� SSLVerifyClient [page 48]

� SSLVerifyDepth [page 49]

42 Inets

Inets Reference Manual httpd core

SECURE SOCKETS LAYER (SSL)

The SSL support is realized using the SSLeay9 package. Please refer to ssl(3).

SSLeay is an implementation of Netscape’s Secure Socket Layer specification - the
software encryption protocol specification behind the Netscape Secure Server and the
Netscape Navigator Browser.

The SSL Protocol can negotiate an encryption algorithm and session key as well as
authenticate a server before the application protocol transmits or receives it’s first byte
of data. All of the application protocol data is transmitted encrypted, ensuring privacy.

The SSL protocol provides “channel security” which has three basic properties:

� The channel is private. Encryption is used for all messages after a simple
handshake is used to define a secret key.

� The channel is authenticated. The server end-point of the conversation is always
authenticated, while the client endpoint is optionally authenticated.

� The channel is reliable. The message transport includes a message integrity check
(using a MAC).

The SSL mechanism can be enabled in the server by using the SSLCACertificateFile
[page 48], SSLCertificateFile [page 48], SSLCertificateKeyFile [page 48], SSLCiphers
[page 49], SSLVerifyDepth [page 49], and the SSLVerifyClient [page 48] config
directives.

MIME TYPE SETTINGS

Files delivered to the client are MIME typed according to RFC 1590. File suffixes are
mapped to MIME types before file delivery.

The mapping between file suffixes and MIME types are specified in the mime.types file.
The mime.types reside within the conf directory of the ServerRoot [page 47]. Refer to
the example server root10. MIME types may be added as required to the mime.types
file and the DefaultType [page 44] config directive can be used to specify a default
mime type.

DIRECTIVE: ”BindAddress”

Syntax: BindAddress address
Default: BindAddress *
Module: httpd core(3) [page 42]

BindAddress defines which address the server will listen to. If the argument is * then
the server listens to all addresses otherwise the server will only listen to the address
specified. Address can be given either as an IP address or a hostname.

9URL: http://psych.psy.uq.oz.au/~ftp/Crypto/
10In Windows: %INETS ROOT%\examples\server root. In UNIX: $INETS ROOT/examples/server root.

43Inets

httpd core Inets Reference Manual

DIRECTIVE: ”DefaultType”

Syntax: DefaultType mime-type
Default: - None - Module: httpd core(3) [page 42]

When the server is asked to provide a document type which cannot be determined by
the MIME Type Settings [page 43], the server must inform the client about the content
type of documents and mime-type is used if an unknown type is encountered.

DIRECTIVE: ”DocumentRoot”

Syntax: DocumentRoot directory-filename
Default: - Mandatory - Module: httpd core(3) [page 42]

DocumentRoot points the Web server to the document space from which to serve
documents from. Unless matched by a directive like Alias [page 59], the server appends
the path from the requested URL to the DocumentRoot to make the path to the
document, for example:

DocumentRoot /usr/web

and an access to http://your.server.org/index.html would refer to
/usr/web/index.html.

DIRECTIVE: ”KeepAlive”

Syntax: KeepAlive true | false
Default: true
Module: httpd core(3) [page 42]

This directive tells the server whether to use persistent connection or not when the
client claims to be HTTP/1.1 compliant.Note:the value of KeepAlive has changed from
previous versions to be compliant with Apache.

DIRECTIVE: ”KeepAliveTimeout”

Syntax: KeepAliveTimeout seconds
Default:150
Module: httpd core(3) [page 42]

The number of seconds the server will wait for a subsequent request from the client
before closing the connection. If the load on the server is high you may want to shorten
this.

44 Inets

Inets Reference Manual httpd core

DIRECTIVE: ”MaxBodyAction”

Syntax: MaxBodyAction action
Default: MaxBodyAction close Module: httpd core(3) [page 42]

MaxBodyAction specifies the action to be taken when the message body limit has been
passed.

close the default and preferred communication type. ip comm is also used for all
remote message passing in Erlang.

reply414 a reply (status) message with code 414 will be sent to the client prior to
closing the socket. Note that this code is not defined in the HTTP/1.0 version of
the protocol.

DIRECTIVE: ”MaxBodySize”

Syntax: MaxBodySize size
Default: MaxBodySize nolimit Module: httpd core(3) [page 42]

MaxBodySize limits the size of the message body of HTTP request. The reply to this is
specified by the MaxBodyAction directive. Valid size is:

nolimit the default message body limit, e.g. no limit.

integer() any positive number.

DIRECTIVE: ”MaxClients”

Syntax: MaxClients number
Default: MaxClients 150 Module: httpd core(3) [page 42]

MaxClients limits the number of simultaneous requests that can be supported. No
more than this number of child server process’s can be created.

DIRECTIVE: ”MaxHeaderAction”

Syntax: MaxHeaderAction action
Default: MaxHeaderAction close Module: httpd core(3) [page 42]

MaxHeaderAction specifies the action to be taken when the message Header limit has
been passed.

close the socket is closed without any message to the client. This is the default action.

reply414 a reply (status) message with code 414 will be sent to the client prior to
closing the socket. Note that this code is not defined in the HTTP/1.0 version of
the protocol.

45Inets

httpd core Inets Reference Manual

DIRECTIVE: ”MaxHeaderSize”

Syntax: MaxHeaderSize size
Default: MaxHeaderSize 10240 Module: httpd core(3) [page 42]

MaxHeaderSize limits the size of the message header of HTTP request. The reply to
this is specified by the MaxHeaderAction directive. Valid size is:

integer() any positive number (default is 10240)

nolimit no limit should be applied

DIRECTIVE: ”MaxKeepAliveRequest”

Syntax: MaxKeepAliveRequest NumberOfRequests
Default:- Disabled -
Module: httpd core(3) [page 42]

The number of request that a client can do on one connection. When the server has
responded to the number of requests defined by MaxKeepAliveRequest the server close
the connection. The server will close it even if there are queued request.

DIRECTIVE: ”Modules”

Syntax: Modules module module ...
Default: Modules mod get mod head mod log
Module: httpd core(3) [page 42]

Modules defines which EWSAPI modules to be used in a specific server setup. module is
a module in the code path of the server which has been written in accordance with the
EWSAPI [page 34] (Erlang Web Server API). The server executes functionality in each
module, from left to right (from now on called EWSAPI Module Sequence).

Before altering the EWSAPI Modules Sequence please observe what types of data each
module uses and propagates. Read the “EWSAPI Interaction” section for each module
and the EWSAPI Module Interaction [page 39] description in httpd(3).

DIRECTIVE: ”Port”

Syntax: Port number
Default: Port 80
Module: httpd core(3) [page 42]

Port defines which port number the server should use (0 to 65535). Certain port
numbers are reserved for particular protocols, i.e. examine your OS characteristics11 for
a list of reserved ports. The standard port for HTTP is 80.

All ports numbered below 1024 are reserved for system use and regular (non-root)
users cannot use them, i.e. to use port 80 you must start the Erlang node as root. (sic!)
If you do not have root access choose an unused port above 1024 typically 8000, 8080
or 8888.

11In UNIX: /etc/services.

46 Inets

Inets Reference Manual httpd core

DIRECTIVE: ”ServerAdmin”

Syntax: ServerAdmin email-address
Default: ServerAdmin unknown@unknown
Module: httpd core(3) [page 42]

ServerAdmin defines the email-address of the server administrator, to be included in
any error messages returned by the server. It may be worth setting up a dedicated user
for this because clients do not always state which server they have comments about, for
example:

ServerAdmin www-admin@white-house.com

DIRECTIVE: ”ServerName”

Syntax: ServerName fully-qualified domain name
Default: - Mandatory -
Module: httpd core(3) [page 42]

ServerName sets the fully-qualified domain name of the server.

DIRECTIVE: ”ServerRoot”

Syntax: ServerRoot directory-filename
Default: - Mandatory -
Module: httpd core(3) [page 42]

ServerRoot defines a directory-filename where the server has it’s operational home,
e.g. used to store log files and system icons. Relative paths specified in the config file
refer to this directory-filename (See mod log(3) [page 98]).

DIRECTIVE: ”SocketType”

Syntax: SocketType type
Default: SocketType ip comm
Module: httpd core(3) [page 42]

SocketType defines which underlying communication type to be used. Valid socket
types are:

ip comm the default and preferred communication type. ip comm is also used for all
remote message passing in Erlang.

ssl the communication type to be used to support SSL (Read more about Secure
Sockets Layer (SSL) [page 43] in httpd(3)).

47Inets

httpd core Inets Reference Manual

DIRECTIVE: ”SSLCACertificateFile”

Syntax: SSLCACertificateFile filename
Default: - None -
Module: httpd core(3) [page 42]

SSLCACertificateFile points at a PEM encoded certificate of the certification
authorities. Read more about PEM encoded certificates in the SSL application
documentation. Read more about PEM encoded certificates in the SSL application
documentation.

DIRECTIVE: ”SSLCertificateFile”

Syntax: SSLCertificateFile filename
Default: - None -
Module: httpd core(3) [page 42]

SSLCertificateFile points at a PEM encoded certificate. Read more about PEM
encoded certificates in the SSL application documentation. The dummy certificate
server.pem12, in the Inets distribution, can be used for test purposes. Read more about
PEM encoded certificates in the SSL application documentation.

DIRECTIVE: ”SSLCertificateKeyFile”

Syntax: SSLCertificateKeyFile filename
Default: - None -
Module: httpd core(3) [page 42]

SSLCertificateKeyFile is used to point at a certificate key file. This directive should
only be used if a certificate key has not been bundled with the certificate file pointed at
by SSLCertificateFile [page 48].

DIRECTIVE: ”SSLVerifyClient”

Syntax: SSLVerifyClient type
Default: - None -
Module: httpd core(3) [page 42]

Set type to:

0 if no client certificate is required.

1 if the client may present a valid certificate.

2 if the client must present a valid certificate.

3 if the client may present a valid certificate but it is not required to have a valid CA.

Read more about SSL in the application documentation.
12In Windows: %INETS%\examples\server root\ssl\. In UNIX: $INETS/examples/server root/ssl/.

48 Inets

Inets Reference Manual httpd core

DIRECTIVE: ”SSLVerifyDepth”

Syntax: SSLVerifyDepth integer
Default: - None -
Module: httpd core(3) [page 42]

This directive specifies how far up or down the (certification) chain we are prepared to
go before giving up.

Read more about SSL in the application documentation.

DIRECTIVE: ”SSLCiphers”

Syntax: SSLCiphers ciphers
Default: - None -
Module: httpd core(3) [page 42]

SSLCihers is a colon separated list of ciphers.

Read more about SSL in the application documentation.

DIRECTIVE: ”SSLPasswordCallbackFunction”

Syntax: SSLPasswordCallbackFunction function
Default: - None -
Module: httpd core(3) [page 42]

The SSLPasswordCallbackFunction function in module
SSLPasswordCallbackModule is called in order to retrieve the user’s password.

Read more about SSL in the application documentation.

DIRECTIVE: ”SSLPasswordCallbackModule”

Syntax: SSLPasswordCallbackModule function
Default: - None -
Module: httpd core(3) [page 42]

The SSLPasswordCallbackFunction function in the SSLPasswordCallbackModule
module is called in order to retrieve the user’s password.

Read more about SSL in the application documentation.

SEE ALSO

httpd(3) [page 27]

49Inets

httpd socket Inets Reference Manual

httpd socket
Erlang Module

This module provides the EWSAPI module programmer with utility functions for
generic sockets communication. The appropriate communication mechanism is
transparently used, that is ip comm or ssl.

Exports

deliver(SocketType,Socket,Binary) -> Result

Types:

� SocketType = socket type()
� Socket = socket()
� Binary = binary()
� Result = socket closed | void()

deliver/3 sends the Binary over the Socket using the specified SocketType. Socket
and SocketType should be the socket and the socket type form the mod record as
defined in httpd.

peername(SocketType,Socket) -> fPort,IPAddressg

Types:

� SocketType = socket type()
� Socket = socket()
� Port = integer()
� IPAddress = string()

peername/3 returns the Port and IPAddress of the remote Socket.

resolve() -> HostName

Types:

� HostName = string()

resolve/0 returns the official HostName of the current host.

SEE ALSO

httpd(3) [page 27]

50 Inets

Inets Reference Manual httpd util

httpd util
Erlang Module

This module provides the EWSAPI [page 34] module programmer with miscellaneous
utility functions.

Exports

convert request date(DateString) -> ErlDate|bad date

Types:

� DateString = string()
� ErlDate = ffYear,Month,Dateg,fHour,Min,Secgg
� Year = Month = Date = Hour = Min = Sec = integer()

convert request date/1 converts DateString to the Erlang date format. DateString
must be in one of the three date formats that is defined in the RFC 2616.

create etag(FileInfo) -> Etag

Types:

� FileInfo = file info()
� Etag = string()

create etag/1 calculates the Etag for a file, from it’s size and time for last
modification. fileinfo is a record defined in kernel/include/file.hrl

decode base64(Base64String) -> ASCIIString

Types:

� Base64String = ASCIIString = string()

decode base64/1 converts Base64String to the plain ascii string (ASCIIString). The
string "BAD!" is returned if Base64String is not base64 encoded. Read more about
base64 encoding in RFC 1521.

decode hex(HexValue) -> DecValue

Types:

� HexValue = DecValue = string()

Converts the hexadecimal value HexValue into it’s decimal equivalent (DecValue).

day(NthDayOfWeek) -> DayOfWeek

Types:

51Inets

httpd util Inets Reference Manual

� NthDayOfWeek = 1-7
� DayOfWeek = string()

day/1 converts the day of the week (NthDayOfWeek) as an integer (1-7) to an
abbreviated string, that is:

1 = “Mon”, 2 = “Tue”, ..., 7 = “Sat”.

encode base64(ASCIIString) -> Base64String

Types:

� ASCIIString = string()
� Base64String = string()

encode base64 encodes a plain ascii string to a Base64 encoded string. See RFC 1521
for a description of Base64 encoding.

flatlength(NestedList) -> Size

Types:

� NestedList = list()
� Size = integer()

flatlength/1 computes the size of the possibly nested list NestedList. Which may
contain binaries.

header(StatusCode,PersistentConn)

header(StatusCode,Date)

header(StatusCode,MimeType,Date)

header(StatusCode,MimeType,PersistentConn,Date) -> HTTPHeader

Types:

� StatusCode = integer()
� Date = rfc1123 date()
� MimeType = string()
� PersistentConn = true | false

header returns a HTTP 1.1 header string. The StatusCode is one of the status codes
defined in RFC 2616 and the Date string is RFC 1123 compliant. (See rfc1123 date/0
[page 55]).

Note that the two version of header/n that does not has a PersistentConn argument is
there only for backward compability, and must not be used in new EWSAPI modules.
that will support persistent connections.

hexlist to integer(HexString) -> Number

Types:

� Number = integer()
� HexString = string()

hexlist to integer Convert the Hexadecimal value of HexString to an integer.

integer tohexlist(Number) -> HexString

Types:

52 Inets

Inets Reference Manual httpd util

� Number = integer()
� HexString = string()

integer to hexlist/1 Returns a string that represents the Number in a Hexadecimal
form.

key1search(TupleList,Key)

key1search(TupleList,Key,Undefined) -> Result

Types:

� TupleList = [tuple()]
� Key = term()
� Result = term() | undefined | Undefined
� Undefined = term()

key1search searches the TupleList for a tuple whose first element is Key.
key1search/2 returns undefined and key1search/3 returns Undefined if no tuple is
found.

lookup(ETSTable,Key) -> Result

lookup(ETSTable,Key,Undefined) -> Result

Types:

� ETSTable = ets table()
� Key = term()
� Result = term() | undefined | Undefined
� Undefined = term()

lookup extracts fKey,Valueg tuples from ETSTable and returns the Value associated
with Key. If ETSTable is of type bag only the first Value associated with Key is returned.
lookup/2 returns undefined and lookup/3 returns Undefined if no Value is found.

lookup mime(ConfigDB,Suffix)

lookup mime(ConfigDB,Suffix,Undefined) -> MimeType

Types:

� ConfigDB = ets table()
� Suffix = string()
� MimeType = string() | undefined | Undefined
� Undefined = term()

lookup mime returns the mime type associated with a specific file suffix as specified in
the mime.types file (located in the config directory13).

lookup mime default(ConfigDB,Suffix)

lookup mime default(ConfigDB,Suffix,Undefined) -> MimeType

Types:

� ConfigDB = ets table()
� Suffix = string()
� MimeType = string() | undefined | Undefined

13In Windows: %SERVER ROOT%\conf\mime.types. In UNIX: $SERVER ROOT/conf/mime.types.

53Inets

httpd util Inets Reference Manual

� Undefined = term()

lookup mime default returns the mime type associated with a specific file suffix as
specified in the mime.types file (located in the config directory14). If no appropriate
association can be found the value of DefaultType [page 44] is returned.

message(StatusCode,PhraseArgs,ConfigDB) -> Message

Types:

� StatusCode = 301 | 400 | 403 | 404 | 500 | 501 | 504
� PhraseArgs = term()
� ConfigDB = ets table
� Message = string()

message/3 returns an informative HTTP 1.1 status string in HTML. Each StatusCode
requires a specific PhraseArgs:

301 string(): A URL pointing at the new document position.

400 | 401 | 500 none (No PhraseArgs)

403 | 404 string(): A Request-URI as described in RFC 2616.

501 fMethod,RequestURI,HTTPVersiong: The HTTP Method, Request-URI and
HTTP-Version as defined in RFC 2616.

504 string(): A string describing why the service was unavailable.

month(NthMonth) -> Month

Types:

� NthMonth = 1-12
� Month = string()

month/1 converts the month NthMonth as an integer (1-12) to an abbreviated string,
that is:

1 = “Jan”, 2 = “Feb”, ..., 12 = “Dec”.

multi lookup(ETSTable,Key) -> Result

Types:

� ETSTable = ets table()
� Key = term()
� Result = [term()]

multi lookup extracts all fKey,Valueg tuples from an ETSTable and returns all Values
associated with the Key in a list.

reason phrase(StatusCode) -> Description

Types:

� StatusCode = 100| 200 | 201 | 202 | 204 | 205 | 206 | 300 | 301 | 302 | 303 |
304 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 410 411 | 412 | 413 | 414 415 |
416 | 417 | 500 | 501 | 502 | 503 | 504 | 505

� Description = string()
14In Windows: %SERVER ROOT%\conf\mime.types. In UNIX: $SERVER ROOT/conf/mime.types.

54 Inets

Inets Reference Manual httpd util

reason phrase returns the Description of an HTTP 1.1 StatusCode, for example 200
is “OK” and 201 is “Created”. Read RFC 2616 for further information.

rfc1123 date() -> RFC1123Date

rfc1123 date(ffYYYY,MM,DDg,fHour,Min,Secggg) -> RFC1123Date

Types:

� YYYY = MM = DD = Hour = Min =Sec = integer()
� RFC1123Date = string()

rfc1123 date/0 returns the current date in RFC 1123 format. rfc date/1 converts the
date in the Erlang format to the RFC 1123 date format.

split(String,RegExp,N) -> SplitRes

Types:

� String = RegExp = string()
� SplitRes = fok, FieldListg | ferror, errordesc()g
� Fieldlist = [string()]
� N = integer

split/3 splits the String in N chunks using the RegExp. split/3 is is equivalent to
regexp:split/2with one exception, that is N defines the number of maximum number
of fields in the FieldList.

split script path(RequestLine) -> Splitted

Types:

� RequestLine = string()
� Splitted = not a script | fPath, PathInfo, QueryStringg
� Path = QueryString = PathInfo = string()

split script path/1 is equivalent to split path/1 with one exception. If the longest
possible path is not a regular, accessible and executable file not a script is returned.

split path(RequestLine) -> fPath,QueryStringOrPathInfog

Types:

� RequestLine = Path = QueryStringOrPathInfo = string()

split path/1 splits the RequestLine in a file reference (Path) and a QueryString or a
PathInfo string as specified in RFC 2616. A QueryString is isolated from the Path
with a question mark (?) and PathInfo with a slash (/). In the case of a QueryString,
everything before the ? is a Path and everything after a QueryString. In the case of a
PathInfo the RequestLine is scanned from left-to-right on the hunt for longest
possible Path being a file or a directory. Everything after the longest possible Path,
isolated with a /, is regarded as PathInfo. The resulting Path is decoded using
decode hex/1 before delivery.

strip(String) -> Stripped

Types:

� String = Stripped = string()

55Inets

httpd util Inets Reference Manual

strip/1 removes any leading or trailing linear white space from the string. Linear white
space should be read as horisontal tab or space.

suffix(FileName) -> Suffix

Types:

� FileName = Suffix = string()

suffix/1 is equivalent to filename:extension/1with one exception, that is Suffix is
returned without a leading dot (.).

to lower(String) -> ConvertedString

Types:

� String = ConvertedString = string()

to lower/1 converts upper-case letters to lower-case.

to upper(String) -> ConvertedString

Types:

� String = ConvertedString = string()

to upper/1 converts lower-case letters to upper-case.

SEE ALSO

httpd(3) [page 27]

56 Inets

Inets Reference Manual mod actions

mod actions
Erlang Module

This module runs CGI scripts whenever a file of a certain type or HTTP method (See
RFC 1945) is requested. The following config directives are described:

� Action [page 57]

� Script [page 57]

DIRECTIVE: ”Action”

Syntax: Action mime-type cgi-script
Default: - None -
Module: mod actions(3) [page 57]

Action adds an action, which will activate a cgi-script whenever a file of a certain
mime-type is requested. It propagates the URL and file path of the requested document
using the standard CGI PATH INFO and PATH TRANSLATED environment variables.

Examples:

Action text/plain /cgi-bin/log and deliver text
Action home-grown/mime-type1 /~bob/do special stuff

DIRECTIVE: ”Script”

Syntax: Script method cgi-script
Default: - None -
Module: mod actions(3) [page 57]

Script adds an action, which will activate a cgi-script whenever a file is requested
using a certain HTTP method. The method is either GET or POST as defined in RFC
1945. It propagates the URL and file path of the requested document using the
standard CGI PATH INFO and PATH TRANSLATED environment variables.

Examples:

Script GET /cgi-bin/get
Script POST /~bob/put and a little more

57Inets

mod actions Inets Reference Manual

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 59].

Exports the following EWSAPI interaction data, if possible:

fnew request uri,RequestURIg An alternative RequestURI has been generated.

Uses the following exported EWSAPI functions:

� mod alias:path/3 [page 61]

SEE ALSO

httpd(3) [page 27], mod alias(3) [page 59]

58 Inets

Inets Reference Manual mod alias

mod alias
Erlang Module

This module makes it possible to map different parts of the host file system into the
document tree. The following config directives are described:

� Alias [page 59]

� DirectoryIndex [page 59]

� ScriptAlias [page 60]

DIRECTIVE: ”Alias”

Syntax: Alias url-path directory-filename
Default: - None -
Module: mod alias(3) [page 59]

The Alias directive allows documents to be stored in the local file system instead of the
DocumentRoot [page 44] location. URLs with a path that begins with url-path is
mapped to local files that begins with directory-filename, for example:

Alias /image /ftp/pub/image

and an access to http://your.server.org/image/foo.gif would refer to the file
/ftp/pub/image/foo.gif.

DIRECTIVE: ”DirectoryIndex”

Syntax: DirectoryIndex file file ...
Default: - None -
Module: mod alias(3) [page 59]

DirectoryIndex specifies a list of resources to look for if a client requests a directory
using a / at the end of the directory name. file depicts the name of a file in the
directory. Several files may be given, in which case the server will return the first it
finds, for example:

DirectoryIndex index.html

and access to http://your.server.org/docs/ would return
http://your.server.org/docs/index.html if it existed.

59Inets

mod alias Inets Reference Manual

DIRECTIVE: ”ScriptAlias”

Syntax: ScriptAlias url-path directory-filename
Default: - None -
Module: mod alias(3) [page 59]

The ScriptAlias directive has the same behavior as the Alias [page 59] directive, except
that it also marks the target directory as containing CGI scripts. URLs with a path
beginning with url-path are mapped to scripts beginning with directory-filename,
for example:

ScriptAlias /cgi-bin/ /web/cgi-bin/

and an access to http://your.server.org/cgi-bin/foo would cause the server to run
the script /web/cgi-bin/foo.

EWSAPI MODULE INTERACTION

Exports the following EWSAPI interaction data, if possible:

freal name,fPath,AfterPathgg Path and AfterPath is as defined in
httpd util:split path/1 [page 55] with one exception - Path has been run through
default index/2 [page 60].

Uses the following exported EWSAPI functions:

� mod alias:default index/2 [page 60]

� mod alias:path/3 [page 61]

� mod alias:real name/3 [page 61]

This module furthermore exports a batch of functions to be used by other EWSAPI
modules:

Exports

default index(ConfigDB,Path) -> NewPath

Types:

� ConfigDB = config db()
� Path = NewPath = string()

If Path is a directory, default index/2, it starts searching for resources or files that are
specified in the config directive DirectoryIndex [page 59]. If an appropriate resource or
file is found, it is appended to the end of Path and then returned. Path is returned
unaltered, if no appropriate file is found, or if Path is not a directory. config db() is
the server config file in ETS table format as described in httpd(3) [page 34].

path(Data,ConfigDB,RequestURI) -> Path

Types:

� Data = interaction data()

60 Inets

Inets Reference Manual mod alias

� ConfigDB = config db()
� RequestURI = Path = string()

path/3 returns the actual file Path in the RequestURI (See RFC 1945). If the
interaction data freal name,fPath,AfterPathgg has been exported by mod alias(3)
[page 60]; Path is returned. If no interaction data has been exported, ServerRoot [page
47] is used to generate a file Path. config db() and interaction data() are as
defined in httpd(3) [page 34].

real name(ConfigDB,RequestURI,Aliases) -> Ret

Types:

� ConfigDB = config db()
� RequestURI = string()
� Aliases = [fFakeName,RealNameg]
� Ret = fShortPath,Path,AfterPathg
� ShortPath = Path = AfterPath = string()

real name/3 traverses Aliases, typically extracted from ConfigDB, and matches each
FakeName with RequestURI. If a match is found FakeName is replaced with RealName in
the match. The resulting path is split into two parts, that is ShortPath and AfterPath
as defined in httpd util:split path/1 [page 55]. Path is generated from ShortPath, that
is the result from default index/2 [page 60] with ShortPath as an argument.
config db() is the server config file in ETS table format as described in httpd(3) [page
34].

real script name(ConfigDB,RequestURI,ScriptAliases) -> Ret

Types:

� ConfigDB = config db()
� RequestURI = string()
� ScriptAliases = [fFakeName,RealNameg]
� Ret = fShortPath,AfterPathg | not a script
� ShortPath = AfterPath = string()

real name/3 traverses ScriptAliases, typically extracted from ConfigDB, and matches
each FakeName with RequestURI. If a match is found FakeName is replaced with
RealName in the match. If the resulting match is not an executable script not a script
is returned. If it is a script the resulting script path is in two parts, that is ShortPath and
AfterPath as defined in httpd util:split script path/1 [page 55]. config db() is the
server config file in ETS table format as described in httpd(3) [page 34].

SEE ALSO

httpd(3) [page 27]

61Inets

mod auth Inets Reference Manual

mod auth
Erlang Module

This module provides for basic user authentication using textual files, dets databases as
well as mnesia databases. The following config directives are supported:

� <Directory> [page 62]
� AuthDBType [page 63]
� AuthAccessPassword [page 66]
� AuthUserFile [page 64]
� AuthGroupFile [page 65]
� AuthName [page 65]
� allow [page 66]
� deny [page 66]
� require [page 67]

The Directory [page 62] config directive is central to be able to restrict access to certain
areas of the server. Please read about the Directory [page 62] config directive.

DIRECTIVE: ”Directory”

Syntax: <Directory regexp-filename>
Default: - None -
Module: mod auth(3) [page 62]
Related: allow [page 66], deny [page 66], AuthAccessPassword [page 66] AuthUserFile
[page 64], AuthGroupFile [page 65], AuthName [page 65], require [page 67]

<Directory> and </Directory> are used to enclose a group of directives which
applies only to the named directory and sub-directories of that directory.
regexp-filename is an extended regular expression (See regexp(3)). For example:

<Directory /usr/local/httpd[12]/htdocs>
AuthAccessPassword sOmEpAsSwOrD
AuthDBType plain
AuthName My Secret Garden
AuthUserFile /var/tmp/server root/auth/user
AuthGroupFile /var/tmp/server root/auth/group
require user ragnar edward
require group group1
allow from 123.145.244.5

</Directory>

If multiple directory sections match the directory (or its parents), then the directives are
applied with the shortest match first. For example if you have one directory section for
garden/ and one for garden/flowers, the garden/ section matches first.

62 Inets

Inets Reference Manual mod auth

DIRECTIVE: ”AuthDBType”

Syntax: AuthDBType plain | dets | mnesia
Default: - None -
Module: mod auth(3) [page 62]
Context: <Directory> [page 62]
Related: allow [page 66], deny [page 66], AuthAccessPassword [page 66], AuthName
[page 65], AuthUserFile [page 64], AuthGroupFile [page 65], require [page 67]

AuthDBType sets the type of authentication database that is used for the directory.The
key difference between the different methods is that dynamic data can be saved when
Mnesia and Dets is used.

If Mnesia is used as storage method, Mnesia must be started prio to the webserver. The
first time Mnesia is started the schema and the tables must be created before Mnesia is
started. A naive example of a module with two functions that creates and start mnesia
is provided here. The function shall be sued the first time. first start/0 creates the
schema and the tables. The second function start/0 shall be used in consecutive
startups. start/0 Starts Mnesia and wait for the tables to be initiated. This function
must only be used when the schema and the tables already is created.

-module(mnesia_test).
-export([start/0,load_data/0]).
-include("mod_auth.hrl").

first_start()->
mnesia:create_schema([node()]),
mnesia:start(),
mnesia:create_table(httpd_user,

[{type,bag},{disc_copies,[node()]},
{attributes,record_info(fields,httpd_user)}]),

mnesia:create_table(httpd_group,
[{type,bag},{disc_copies,[node()]},
{attributes,record_info(fields,httpd_group)}]),

mnesia:wait_for_tables([httpd_user,httpd_group],60000).

start()->
mnesia:start(),
mnesia:wait_for_tables([httpd_user,httpd_group],60000).

To create the Mnesia tables we use two records defined in mod auth.hrl so the file must
be included.

The first function first start/0 creates a schema that specify on which nodes the
database shall reside. Then it starts Mnesia and creates the tables. The first argument is
the name of the tables, the second argument is a list of options how the table will be
created, see Mnesia documentation for more information. Since the current
implementation of the mod auth mnesia saves one row for each user the type must be
bag.

When the schema and the tables is created the second function start/0shall be used to
start Mensia. It starts Mnesia and wait for the tables to be loaded. Mnesia use the
directory specified as mnesia dir at startup if specified, otherwise Mnesia use the
current directory.

63Inets

mod auth Inets Reference Manual

Warning:
For security reasons, make sure that the Mnesia tables are stored outside the
document tree of the Web server. If it is placed in the directory which it protects,
clients will be able to download the tables.

Note:
Only the dets and mnesia storage methods allow writing of dynamic user data to
disk. plain is a read only method.

DIRECTIVE: ”AuthUserFile”

Syntax: AuthUserFile filename
Default: - None -
Module: mod auth(3) [page 62]
Context: <Directory> [page 62]
Related: allow [page 66], deny [page 66], AuthDBType [page 63], AuthAccessPassword
[page 66], AuthGroupFile [page 65], AuthName [page 65], require [page 67]

AuthUserFile sets the name of a file which contains the list of users and passwords for
user authentication. filename can be either absolute or relative to the ServerRoot.

If using the plain storage method, this file is a plain text file, where each line contains a
user name followed by a colon, followed by the non-encrypted password. The behavior is
undefined if user names are duplicated. For example:

ragnar:s7Xxv7
edward:wwjau8

If using the dets storage method, the user database is maintained by dets and should
not be edited by hand. Use the API [page 68] in this module to create / edit the user
database.

This directive is ignored if using the mnesia storage method.

Warning:
For security reasons, make sure that the AuthUserFile is stored outside the
document tree of the Web server. If it is placed in the directory which it protects,
clients will be able to download it.

64 Inets

Inets Reference Manual mod auth

DIRECTIVE: ”AuthGroupFile”

Syntax: AuthGroupFile filename
Default: - None -
Module: mod auth(3) [page 62]
Context: <Directory> [page 62]
Related: allow [page 66], deny [page 66], AuthName [page 65], AuthUserFile [page
64], AuthDBType [page 63], AuthAccessPassword [page 66], require [page 67]

AuthGroupFile sets the name of a file which contains the list of user groups for user
authentication. filename can be either absolute or relative to the ServerRoot.

If you use the plain storage method, the group file is a plain text file, where each line
contains a group name followed by a colon, followed by the member user names
separated by spaces. For example:

group1: bob joe ante

If using the dets storage method, the group database is maintained by dets and should
not be edited by hand. Use the API [page 68] in this module to create / edit the group
database.

This directive is ignored if using the mnesia storage method.

Warning:
For security reasons, make sure that the AuthGroupFile is stored outside the
document tree of the Web server. If it is placed in the directory which it protects,
clients will be able to download it.

DIRECTIVE: ”AuthName”

Syntax: AuthName auth-domain
Default: - None -
Module: mod auth(3) [page 62]
Context: <Directory> [page 62]
Related: allow [page 66], deny [page 66], AuthGroupFile [page 65], AuthUserFile
[page 64], AuthDBType [page 63], AuthAccessPassword [page 66], require [page 67]

AuthName sets the name of the authorization realm (auth-domain) for a directory. This
string informs the client about which user name and password to use.

65Inets

mod auth Inets Reference Manual

DIRECTIVE: ”AuthAccessPassword”

Syntax: AuthAccessPassword password
Default: NoPassword
Module: mod auth(3) [page 62]
Context: <Directory> [page 62]
Related: allow [page 66], deny [page 66], AuthGroupFile [page 65], AuthUserFile
[page 64], AuthDBType [page 63], AuthName [page 65], require [page 67]

If AuthAccessPassword is set to other than NoPassword the password is required for all
API calls. If the password is set to DummyPassword the password must be changed
before any other API calls. To secure the authenticating data the password must be
changed after the webserver is started since it otherwise is written in clear text in the
configuration file.

DIRECTIVE: ”allow”

Syntax: allow from host host ...
Default: allow from all
Module: mod auth(3) [page 62]
Context: <Directory> [page 62]
Related: AuthAccessPassword [page 66], deny [page 66], AuthUserFile [page 64],
AuthGroupFile [page 65], AuthName [page 65], AuthDBType [page 63] require [page
67]

allow defines a set of hosts which should be granted access to a given directory. host is
one of the following:

all All hosts are allowed access.

A regular expression (Read regexp(3)) All hosts having a numerical IP address
matching the specific regular expression are allowed access.

For example:

allow from 123.34.56.11 150.100.23

The host 123.34.56.11 and all machines on the 150.100.23 subnet are allowed access.

DIRECTIVE: ”deny”

Syntax: deny from host host ...
Default: deny from all
Module: mod auth(3) [page 62]
Context: <Directory> [page 62]
Related: allow [page 66], AuthUserFile [page 64], AuthGroupFile [page 65],
AuthName [page 65], AuthDBType [page 63], AuthAccessPassword [page 66], require
[page 67]

deny defines a set of hosts which should not be granted access to a given directory. host
is one of the following:

all All hosts are denied access.

66 Inets

Inets Reference Manual mod auth

A regular expression (Read regexp(3)) All hosts having a numerical IP address
matching the specific regular expression are denied access.

For example:

deny from 123.34.56.11 150.100.23

The host 123.34.56.11 and all machines on the 150.100.23 subnet are denied access.

DIRECTIVE: ”require”

Syntax: require entity-name entity entity ...
Default: - None -
Module: mod auth(3) [page 62]
Context: <Directory> [page 62]
Related: allow [page 66], deny [page 66], AuthUserFile [page 64], AuthGroupFile
[page 65], AuthName [page 65], AuthDBType [page 63], AuthAccessPassword [page
66]

require defines users which should be granted access to a given directory using a secret
password. The allowed syntaxes are:

require user user-name user-name ... Only the named users can access the
directory.

require group group-name group-name ... Only users in the named groups can
access the directory.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name, fPath, AfterPathgg as defined in mod alias(3) [page 59].

Exports the following EWSAPI interaction data, if possible:

fremote user, Userg The user name with which the user has authenticated himself.

Uses the following exported EWSAPI functions:

� mod alias:path/3 [page 61]

67Inets

mod auth Inets Reference Manual

Exports

add user(UserName, Options) -> true| ferror, Reasong

add user(UserName, Password, UserData, Port, Dir) -> true | ferror, Reasong

add user(UserName, Password, UserData, Address, Port, Dir) -> true | ferror, Reasong

Types:

� UserName = string()
� Options = [Option]
� Option = fpassword,Passwordg | fuserData,UserDatag | fport,Portg |
faddr,Addressg | fdir,Directoryg | fauthPassword,AuthPasswordg

� Password = string()
� UserData = term()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword =string()
� Reason = term()

add user/2, add user/5 and add user/6 adds a user to the user database. If the
operation is succesful, this function returns true. If an error occurs, ferror,Reasong is
returned. When add user/2 is called the Password, UserData Port and Dir options is
mandatory.

delete user(UserName,Options) -> true | ferror, Reasong

delete user(UserName, Port, Dir) -> true | ferror, Reasong

delete user(UserName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

delete user/2, delete user/3 and delete user/4 deletes a user from the user
database. If the operation is succesful, this function returns true. If an error occurs,
ferror,Reasong is returned. When delete user/2 is called the Port and Dir options
are mandatory.

get user(UserName,Options) -> fok, #httpd userg |ferror, Reasong

get user(UserName, Port, Dir) -> fok, #httpd userg | ferror, Reasong

get user(UserName, Address, Port, Dir) -> fok, #httpd userg | ferror, Reasong

Types:

� UserName = string()

68 Inets

Inets Reference Manual mod auth

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

get user/2, get user/3 and get user/4 returns a httpd user record containing the
userdata for a specific user. If the user cannot be found, ferror, Reasong is returned.
When get user/2 is called the Port and Dir options are mandatory.

list users(Options) -> fok, Usersg | ferror, Reasong <name>list users(Port, Dir) ->
fok, Usersg | ferror, Reasong

list users(Address, Port, Dir) -> fok, Usersg | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list()
� AuthPassword = string()
� Reason = atom()

list users/1, list users/2 and list users/3 returns a list of users in the user
database for a specific Port/Dir. When list users/1 is called the Port and Dir options
are mandatory.

add group member(GroupName, UserName, Options) -> true | ferror, Reasong

add group member(GroupName, UserName, Port, Dir) -> true | ferror, Reasong

add group member(GroupName, UserName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� GroupName = string()
� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

69Inets

mod auth Inets Reference Manual

add group member/3, add group member/4 and add group member/5 adds a user to a
group. If the group does not exist, it is created and the user is added to the group. Upon
successful operation, this function returns true. When add group members/3 is called
the Port and Dir options are mandatory.

delete group member(GroupName, UserName, Options) -> true | ferror, Reasong

delete group member(GroupName, UserName, Port, Dir) -> true | ferror, Reasong

delete group member(GroupName, UserName, Address, Port, Dir) -> true | ferror,
Reasong

Types:

� GroupName = string()
� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

delete group member/3, delete group member/4 and delete group member/5
deletes a user from a group. If the group or the user does not exist, this function returns
an error, otherwise it returns true. When delete group member/3 is called the Port
and Dir options are mandatory.

list group members(GroupName, Options) -> fok, Usersg | ferror, Reasong

list group members(GroupName, Port, Dir) -> fok, Usersg | ferror, Reasong

list group members(GroupName, Address, Port, Dir) -> fok, Usersg | ferror, Reasong

Types:

� GroupName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list()
� AuthPassword = string()
� Reason = term()

list group members/2, list group members/3 and list group members/4 lists the
members of a specified group. If the group does not exist or there is an error, ferror,
Reasong is returned. When list group members/2 is called the Port and Dir options
are mandatory.

list groups(Options) -> fok, Groupsg | ferror, Reasong

list groups(Port, Dir) -> fok, Groupsg | ferror, Reasong

70 Inets

Inets Reference Manual mod auth

list groups(Address, Port, Dir) -> fok, Groupsg | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Groups = list()
� AuthPassword = string()
� Reason = term()

list groups/1, list groups/2 and list groups/3 lists all the groups available. If
there is an error, ferror, Reasong is returned. When list groups/1 is called the Port
and Dir options are mandatory.

delete group(GroupName, Options) -> true | ferror,Reasong
<name>delete group(GroupName, Port, Dir) -> true | ferror, Reasong

delete group(GroupName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� GroupName = string()
� AuthPassword = string()
� Reason = term()

delete group/2, delete group/3 and delete group/4 deletes the group specified
and returns true. If there is an error, ferror, Reasong is returned. When
delete group/2 is called the Port and Dir options are mandatory.

update password(Port, Dir, OldPassword, NewPassword, NewPassword) -> ok | ferror,
Reasong

update password(Address,Port, Dir, OldPassword, NewPassword, NewPassword) -> ok |
ferror, Reasong

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� GroupName = string()
� OldPassword = string()
� NewPassword = string()
� Reason = term()

71Inets

mod auth Inets Reference Manual

update password/5 and update password/6 Updates the AuthAccessPassword for the
specified directory. If NewPassword is equal to “NoPassword” no password is requires to
change authorisation data. If NewPassword is equal to “DummyPassword” no changes
can be done without changing the password first.

SEE ALSO

httpd(3) [page 27], mod alias(3) [page 59],

72 Inets

Inets Reference Manual mod browser

mod browser
Erlang Module

When a client requests for an asset the request-header may contain a string that
identifies the product. Many browsers also sends information about which
operating-system the client use. This can be used in conjunction with mod esi to tailor
the response according to the users operating-system and browser.

This module can be used to recognize the browser and operating-system of the client in
two ways either as a module in the EWSAPI response chain or by a separate call to the
function getBrowser/1.

Exports

getBrowser(AgentString)-> fBrowser,OperatingSystemg

Types:

� AgentString = string()
� Browser = fName,Versiong|unknown
� OperatingSystem = win3x|win95|win98|winnt|win2k|sunos4|sunos5|

sun|aix|linux|sco|freebsd|bsd|unknown
� Name = opera|msie|netscape|lynx|mozilla| emacs|soffice|mosaic
� Version = float().

GetBrowser/1, tries to detect which browser and operating system the user has. Note
that the answer is just a best guess since some browsers can identify themselves as other
browsers, read Opera.

EWSAPI MODULE INTERACTION

Exports the following EWSAPI interaction data, if possible:

f’user-agent’,AgentDatag Where AgentDatais the same as the return value from
getBrowser/1. Note that the answer is just a best guess, since some browsers can
identify themselves as other browsers, read Opera.

73Inets

mod cgi Inets Reference Manual

mod cgi
Erlang Module

This module makes it possible to execute vanilla CGI (Common Gateway Interface)
scripts in the server. A file that matches the definition of a ScriptAlias [page 60] config
directive is treated as a CGI script. A CGI script is executed by the server and it’s
output is returned to the client.

mod cgi sends the response transfer-encoded to HTTP/1.1 compatible clients. The
content is transfer encoded with the chunked encoding algorithm. This means that the
Content-Length field not should be in the HTTP header. Furthermore assumes mod cgi
that the first chunk of data from the script is the only chunk with header information. If
the first chunk of data from the script does not contain "\r\n\r\n" mod cgi assumes
that no HTTP-header information is to come from the script. A chunk of data with
HTTP header fields from a script might look something like this:

"Content-Type:text/plain\r\nAccept-Ranges:none\r\n\r\nsome very plain text"

Support for CGI-1.1 is implemented in accordance with the CGI-1.1 specification15.

Note:
CGI is currently available for Erlang/OTP running on a UNIX platform. These
number of platforms will be increased.

� ScriptNoCache [page 74]

� ScriptTimeout [page 75]

DIRECTIVE: ”ScriptNoCache”

Syntax: ScritpNoCache true | false
Default: - false -
Module: mod cgi(3) [page 74]

If ScriptNoCache is set to true the Web server will by default add the header fields
necessary to prevent proxies from caching the page. Generally this is something you
want.

ScriptNoCache true

15URL: http://hoohoo.ncsa.uiuc.edu/cgi/

74 Inets

Inets Reference Manual mod cgi

DIRECTIVE: ”ScriptTimeout”

Syntax: ScritpTimeout Seconds
Default: 15
Module: mod cgi(3) [page 74]

The time in seconds the web server will wait between each chunk of data from the
script. If the CGI-script not delivers any data before the timeout the connection to the
client will be closed.

ScriptTimeout 15

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

fnew request uri,NewRequestURIg as defined in mod actions(3) [page 58].
fremote user,RemoteUserg as defined in mod auth(3) [page 67].

Uses the following EWSAPI functions:

� mod alias:real name/3 [page 61]
� mod alias:real script name/3 [page 61]
� mod cgi:env/3 [page 75]
� mod cgi:status code:env/1 [page 76]

This module furthermore exports a batch of functions to be used by other EWSAPI
modules:

Exports

env(Info,Script,AfterScript) -> EnvString

Types:

� Info = mod record()
� Script = AfterScript = EnvString = string()

Note:
This function should only be used when implementing CGI-1.1 functionality on
UNIX platforms.

open port/2 is normally used to start and interact with CGI scripts. open port/2 takes
an external program as input; env(1) (GNU Shell Utility) is typically used in the case
of a CGI script. env(1) execute the CGI script in a modified environment and takes the
CGI script and a string of environment variables as input. env/3 returns an appropriate
CGI-1.1 environment variable string to be used for this purpose. The environment
variables in the string are those defined in the CGI-1.1 specification16. mod record() is

16URL: http://hoohoo.ncsa.uiuc.edu/cgi/

75Inets

mod cgi Inets Reference Manual

a record as defined in the EWSAPI Module Programming [page 34] section of
httpd(3).

status code(CGIOutput) -> fok,StatusCodeg | ferror,Reasong

Types:

� CGIOutput = Reason = string()
� StatusCode = integer()

Certain output from CGI scripts has a special meaning, as described in the CGI
specification17, for example if "Location: http://www.yahoo.com\n\n" is returned
from a CGI script the client gets automatically redirected to Yahoo!18, using the HTTP
302 status code (RFC 1945).

SEE ALSO

httpd(3) [page 27], mod auth(3) [page 62], mod security(3) [page 103], mod alias(3)
[page 59], mod esi(3) [page 82], mod include(3) [page 95]

17URL: http://hoohoo.ncsa.uiuc.edu/cgi/
18URL: http://www.yahoo.com

76 Inets

Inets Reference Manual mod dir

mod dir
Erlang Module

This module generates an HTML directory listing (Apache-style) if a client sends a
request for a directory instead of a file. This module is not configurable and it needs to
be removed from the Modules [page 46] config directive if directory listings is
unwanted.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 60].

Exports the following EWSAPI interaction data, if possible:

fmime type,MimeTypeg The file suffix of the incoming URL mapped into a MimeType
as defined in the Mime Type Settings [page 43] section of httpd core(3).

Uses the following EWSAPI functions:

� mod alias:default index/2 [page 60]

� mod alias:path/3 [page 61]

SEE ALSO

httpd(3) [page 27], mod alias(3) [page 59]

77Inets

mod disk log Inets Reference Manual

mod disk log
Erlang Module

This module uses disk log(3) to make it possible to log all incoming requests to an
access log file. The de-facto standard Common Logfile Format is used for this purpose.
There are numerous statistic programs available to analyze Common Logfile Format log
files. The Common Logfile Format looks as follows:

remotehost rfc931 authuser [date] “request” status bytes

remotehost Remote hostname (or IP number if the DNS hostname is not available).

rfc931 The client’s remote username (RFC 931).

authuser The username with which the user has authenticated himself.

[date] Date and time of the request (RFC 1123).

“request” The request line exactly as it came from the client (RFC 1945).

status The HTTP status code returned to the client (RFC 1945).

bytes The content-length of the document transferred.

This module furthermore uses disk log(3) to support the use of an error log file to
record internal server errors. The error log format is more ad hoc than Common Logfile
Format, but conforms to the following syntax:

[date] access to path failed for remotehost, reason: reason

DIRECTIVE: ”DiskLogFormat”

Syntax: DiskLogFormat internal|external
Default: - external -
Module: mod disk log(3) [page 78]

DiskLogFormat defines the file-format of the log files see disk log for more information.
If the internal file-format is used, the logfile will be repaired after a crash. When a log
file is repaired data might get lost. When the external file-format is used httpd will not
start if the log file is broken.

DiskLogFormat external

78 Inets

Inets Reference Manual mod disk log

DIRECTIVE: ”ErrorDiskLog”

Syntax: ErrorDiskLog filename
Default: - None -
Module: mod disk log(3) [page 78]

ErrorDiskLog defines the filename of the (disk log(3)) error log file to be used to
log server errors. If the filename does not begin with a slash (/) it is assumed to be
relative to the ServerRoot [page 47], for example:

ErrorDiskLog logs/error disk log 8080

and errors will be logged in the server root19 space.

DIRECTIVE: ”ErrorDiskLogSize”

Syntax: ErrorDiskLogSize max-bytes max-files
Default: ErrorDiskLogSize 512000 8
Module: mod disk log(3) [page 78]

ErrorDiskLogSize defines the properties of the (disk log(3)) error log file. The
disk log(3) error log file is of type wrap log and max-bytes will be written to each file
and max-files will be used before the first file is truncated and reused.

DIRECTIVE: ”SecurityDiskLog”

Syntax: SecurityDiskLog filename
Default: - None -
Module: mod disk log(3) [page 78]

SecurityDiskLog defines the filename of the (disk log(3)) access log file which logs
incoming security events i.e authenticated requests. If the filename does not begin
with a slash (/) it is assumed to be relative to the ServerRoot [page 47], see
TransferDiskLog [page 80] for more information.

DIRECTIVE: ”SecurityDiskLogSize”

Syntax: SecurityDiskLogSizemax-bytes max-files
Default: SecurityDiskLogSize 512000 8
Module: mod disk log(3) [page 78]

SecurityDiskLogSize defines the properties of the disk log(3) access log file. The
disk log(3) access log file is of type wrap log and max-bytes will be written to each
file and max-files will be used before the first file is truncated and reused.

19In Windows: %SERVER ROOT%\logs\error disk log 8080. In UNIX: $SERVER ROOT/logs/error disk log 8080.

79Inets

mod disk log Inets Reference Manual

DIRECTIVE: ”TransferDiskLog”

Syntax: TransferDiskLog filename
Default: - None -
Module: mod disk log(3) [page 78]

TransferDiskLog defines the filename of the (disk log(3)) access log file which logs
incoming requests. If the filename does not begin with a slash (/) it is assumed to be
relative to the ServerRoot [page 47], for example:

TransferDiskLog logs/transfer disk log 8080

and errors will be logged in the server root20 space.

DIRECTIVE: ”TransferDiskLogSize”

Syntax: TransferDiskLogSize max-bytes max-files
Default: TransferDiskLogSize 512000 8
Module: mod disk log(3) [page 78]

TransferDiskLogSize defines the properties of the disk log(3) access log file. The
disk log(3) access log file is of type wrap log and max-bytes will be written to each
file and max-files will be used before the first file is truncated and reused.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

fremote user,RemoteUserg as defined in mod auth(3) [page 67].

This module furthermore exports a batch of functions to be used by other EWSAPI
modules:

Exports

error log(Socket,SocketType,ConfigDB,Date,Reason) -> ok | no error log

Types:

� Socket = socket()
� SocketType = ip comm | ssl
� ConfigDB = config db()
� Date = Reason = string()

error log/5 uses disk log(3) to log an error in the error log file. Socket is a handler
to a socket of type SocketType and config db() is the server config file in ETS table
format as described in httpd(3) [page 27]. Date is a RFC 1123 date string as generated
by httpd util:rfc1123 date/0 [page 55].

20In Windows: %SERVER ROOT%\logs\transfer disk log 8080. In UNIX: $SERVER ROOT/logs/transfer disk log 8080.

80 Inets

Inets Reference Manual mod disk log

security log(User,Event) -> ok | no security log

Types:

� User = String()
� Event = String

security log/2 uses disk log(3) to log a security event in the security log file. User is
the users name.

SEE ALSO

httpd(3) [page 27], mod auth(3) [page 62], mod security(3) [page 103], mod log(3)
[page 98]

81Inets

mod esi Inets Reference Manual

mod esi
Erlang Module

The Erlang Scripting Interface (ESI) provides a tight and efficient interface to the
execution of Erlang functions. Erlang functions can be executed with two alternative
schemes, eval and erl. Both of these schemes can utilize the functionality in an Erlang
node efficiently.

Even though the server supports CGI-1.1 [page 74] the use of the Erlang Scripting
Interface (ESI) is encouraged for reasons of efficiency. CGI is resource intensive because
of it’s design. CGI requires the server to fork a new OS process for each executable it
needs to start.

An Erlang function can be written and executed as a CGI script by using erl call(3)
in the erl interface library, for example. The cost is a forked OS process, as described
above. This is a waste of resources, at least when the Web server itself is written in
Erlang (as in this case).

The following config directives are described:

� ErlScripAlias [page 85]

� EvalScriptAlias [page 86]

� ErlScriptNoCache [page 85]

� ErlScriptTimeout [page 86]

ERL SCHEME

The erl scheme is designed to mimic plain CGI, but without the extra overhead. An
URL which calls an Erlang erl function has the following syntax (regular expression):

http://your.server.org/***/Mod[:/]Func(?QueryString|/PathInfo)

The module (Mod) referred to must be found in the code path, and it must define a
function (Func) with an arity of two or three i.e. Func(Env,Input) or
Func(SessionID,Env,Input). Env contains information about the connecting client (see
below), and Input the QueryString or PathInfo as defined in the CGI specification21.
SessionID is a identifier that is used to send parts of the web page back to the user
through the function mod esi:deliver/2

*** above depends on how the ErlScriptAlias [page 85] config directive has been used.
Data returned from the function with arity of two must furthermore take the form as
specified in the CGI specification22.

It is preferable to use the callback function with an arity of three, since the function can
send the data back to the clients in parts instead of generating the whole page before it

21URL: http://hoohoo.ncsa.uiuc.edu/cgi/
22URL: http://hoohoo.ncsa.uiuc.edu/cgi/

82 Inets

Inets Reference Manual mod esi

is sent. The Web server sends the data back to HTTP/1.1 compliant clients with
chunked encoding this means that the Content-Length header field is not necessary, and
should indeed be avoided.

mod esi assumes that if the first chunk of data delivered to the client through the
function mod esi:deliver/2 contains all HTTP-header fields the script will generate. I
the first chunk does not contain the string "\r\n\r\n"c mod esi assumes that the script
not will generate any header data.

Take a look at httpd example.erl in the code release23 for a clarifying example. Start
an example server as described in httpd:start/0 [page 30] and test the following from a
browser (The server name for your example server will differ!):

http://your.server.org:8888/cgi-bin/erl/httpd example/newformat and a call
will be made to httpd example:newformat/3 Something like this will promptly
be shown in the browser:

This new format is nice.
This new format is nice.
This new format is nice.

http://your.server.org:8888/cgi-bin/erl/httpd example/get and a call will be
made to httpd example:get/2 and two input fields and a Submit button will
promptly be shown in the browser. Enter text into the input fields and click on the
Submit button. Something like this will promptly be shown in the browser:

Environment:
[fquery string,"input1=blaha&input2=blaha"g,
fserver software,"eddie/2.2"g,
fserver name,"localhost"g,
fgateway interface,"CGI/1.1"g,
fserver protocol,"HTTP/1.0"g,
fserver port,8080g,
frequest method,"GET"g,
fremote addr,"127.0.0.1"g,
fscript name,"/cgi-bin/erl/httpd example:get?input1=blaha&

input2=blaha"g,
fhttp accept charset,"iso-8859-1,*,utf-8"g,
fhttp accept language,"en"g,
fhttp accept,"image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, */*"g,
fhttp host,"localhost:8080"g,
fhttp user agent, "Mozilla/4.03 [en] (X11;

I; Linux 2.0.30 i586)"g,
fhttp connection,"Keep-Alive"g,
fhttp referer,
"http://localhost:8080/cgi-bin/erl/

httpd example/get"g]
Input:
input1=blaha&input2=blaha

Parsed Input:

23In Windows: %INETS\src. In UNIX: $INETS/src.

83Inets

mod esi Inets Reference Manual

[f"input1","blaha"g,f"input2","blaha"g]

http://your.server.org:8888/cgi-bin/erl/httpd example:post A call will be
made to httpd example:post/2. The same thing will happen as in the example
above but the HTTP POST method will be used instead of the HTTP GET
method.

http://your.server.org:8888/cgi-bin/erl/httpd example:yahoo A call will be
made to to httpd example:yahoo/2 and the Yahoo!24 site will promptly be shown
in your browser.

Note:
httpd:parse query/1 [page 32] is used to generate the Parsed Input: ... data in
the example above.

If a client closes the connection prematurely a message will be sent to the function,
that is either ftcp closed, g or f ,fsocket closed, gg.

EVAL SCHEME

Warning:
The eval scheme can seriously threaten the integrity of the Erlang node housing a
Web server, for example:

http://your.server.org/eval?httpd_example:
print(atom_to_list(apply(erlang,halt,[])))

which effectively will close down the Erlang node, that is use the erl scheme instead
until this security breach has been fixed.

Today there are no good way of solving this problem and therefore Eval Scheme may
be removed in future release-s of Inets.

The eval scheme is straight-forward and does not mimic the behavior of plain CGI. An
URL which calls an Erlang eval function has the following syntax:

http://your.server.org/***/Mod:Func(Arg1,...,ArgN)

The module (Mod) referred to must be found in the code path, and data returned by the
function (Func) is passed back to the client. *** depends on how the EvalScriptAlias
[page 86] config directive has been used. Data returned from the function must
furthermore take the form as specified in the CGI specification25.

Take a look at httpd example.erl in the code release26 for an example. Start an
example server as described in httpd:start/0 [page 30] and test the following from a
browser (The server name for your example server will differ!):

24URL: http://www.yahoo.com
25URL: http://hoohoo.ncsa.uiuc.edu/cgi/
26In Windows: %INETS\src. In UNIX: $INETS/src.

84 Inets

Inets Reference Manual mod esi

http://your.server.org:8888/eval?httpd example:print("Hi!") and a call will
be made to httpd example:print/1 and “Hi!” will promptly be shown in your
browser.

DIRECTIVE: ”ErlScriptAlias”

Syntax: ErlScriptAlias url-path allowed-module allowed-module ...
Default: - None -
Module: mod esi(3) [page 82]

ErlScriptAlias marks all URLs matching url-path as erl scheme [page 82] scripts. A
matching URL is mapped into a specific module and function. The module must be one
of the allowed-module:s. For example:

ErlScriptAlias /cgi-bin/hit me httpd example md4

and a request to http://your.server.org/cgi-bin/hit me/httpd example:yahoo
would refer to httpd example:yahoo/2. Refer to the Erl Scheme [page 82] description
above.

DIRECTIVE: ”ErlScriptNoCache”

Syntax: ErlScriptNoCache true | false
Default: false
Module: mod esi(3) [page 82]

If ErlScriptNoCache is set to true the server will add http header fields that prevents
proxies from caching the page. This is generally a good idea for dynamic content, since
the content often vary between each request.

ErlScriptNoCache true

DIRECTIVE: ”ErlScriptTimeout”

Syntax: ErlScriptTimeout seconds
Default: 15
Module: mod esi(3) [page 82]

If ErlScriptTimeout sets the time in seconds the server will wait between each chunk
of data is delivered through mod esi:deliver/2 when the new Erl Scheme format, that
takes three argument is used.

ErlScriptTimeout 15

85Inets

mod esi Inets Reference Manual

DIRECTIVE: ”EvalScriptAlias”

Syntax: EvalScriptAlias url-path allowed-module allowed-module ...
Default: - None -
Module: mod esi(3) [page 82]

EvalScriptAlias marks all URLs matching url-path as eval scheme [page 84] scripts.
A matching URL is mapped into a specific module and function. The module must be
one of the allowed-module:s. For example:

EvalScriptAlias /cgi-bin/hit me to httpd example md5

and a request to
http://your.server.org/cgi-bin/hit me to/httpd example:print("Hi!") would
refer to httpd example:print/1. Refer to the Eval Scheme [page 84] description
above.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

fremote user,RemoteUserg as defined in mod auth(3) [page 67].

Exports the following EWSAPI interaction data, if possible:

fmime type,MimeTypeg The file suffix of the incoming URL mapped into a MimeType
as defined in the Mime Type Settings [page 43] section of httpd core(3).

Uses the following EWSAPI functions:

� mod alias:real name/3 [page 61]

� mod cgi:status code/1 [page 76]

Exports

deliver(SessionID, Data) -> ok | ferror,Reasong

Types:

� SessionID = term()
� Data = string()
� Reason = term()

This function is only intended to be used from functions called by the Erl Scheme
interface to deliver parts of the content to the user.

Sends data from a Erl Scheme script back to the client. Note that if any HTTP-header
fields will be sent back to the client they must be in the first call to deliver/2. Do not
assume anything about the data type of SessionID, the SessionID must be the SessionID
from the Erl Scheme call.

86 Inets

Inets Reference Manual mod esi

ESWAPI CALLBACK FUNCTIONS

Exports

Module:Function(Env, Input)-> Response

Types:

�

� Env = [EnvironmentDirectives] ++ ParsedHeader
� EnvironmentDirectives = fKey,Valueg
� Key = query string | content length, server software, gateway interface,

server protocol, server port, request method, remote addr, script name. <v>Input =
Response = string()

The Module must be found in the code path and export Function with an arity of two.
An erlScriptAlias must also be set up in the configuration file for the Web server.

If the HTTP request is a post request and a body is sended then content length will be
the length of the posted data. If get is used query string will be the data after ? in the
url.

ParsedHeader is the HTTP request as a key value tuple list. The keys in parsed header
will be the in lower case.

This callback format consumes quite much memory since the whole response must be
generated before it is sent to the user. Therefore it is better to use the callback function
with an arity of three.

Module:Function(SessionID, Env, Input)-> void

Types:

� SessionID = term()
� Env = [EnvironmentDirectives] ++ ParsedHeader
� EnvironmentDirectives = fKey,Valueg
� Key = query string | content length, server software, gateway interface,

server protocol, server port, request method, remote addr, script name. <v>Input =
Response = string()

For information about Environment and Input see Module:Function/2 above.
SessionID is a identifier the server use when deliver/2 is called, do not assume
any-thing about the datatype.

Use this callback function to dynamicly generate dynamic web content. when a part of
the page is generated send the data back to the client through deliver/2. Note that the
first chunk of data sent to the client must at least contain all HTTP header fields that
the response will generate. If the first chunk not contains End of HTTP header that is
"\r\n\r\n" the server will assume that no HTTP header fields will be generated.

SEE ALSO

httpd(3) [page 27], mod alias(3) [page 59], mod auth(3) [page 62], mod security(3)
[page 103], mod cgi(3) [page 74]

87Inets

mod get Inets Reference Manual

mod get
Erlang Module

This module is responsible for handling GET requests to regular files. GET requests for
parts of files is handled by mod range.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 60].

Exports the following EWSAPI interaction data, if possible:

Uses the following EWSAPI functions:

� mod alias:path/3 [page 61]

SEE ALSO

httpd(3) [page 27], mod range(3) [page 101]

88 Inets

Inets Reference Manual mod head

mod head
Erlang Module

This module is responsible for handling HEAD requests to regular files. HEAD requests
for dynamic content is handled by each module responsible for dynamic content.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 60].

Exports the following EWSAPI interaction data, if possible:

Uses the following EWSAPI functions:

� mod alias:path/3 [page 61]

SEE ALSO

httpd(3) [page 27], mod esi(3) [page 82]mod cgi(3) [page 82]

89Inets

mod htaccess Inets Reference Manual

mod htaccess
Erlang Module

This module provides per-directory runtime configurable user-authentication. Each
directory in the path to the requested asset is searched for an access-file (default
.htaccess), that restricts the webservers rights to respond to a request. If an access-file is
found the rules in that file is applied to the request.

The rules in an access-file applies both to files in the same directories and in
subdirectories. If there exists more than one access-file in the path to an asset, the rules
in the access-file nearest the requested asset will be applied.

If many users have web pages on the webserver and every user needs to manage the
security issues alone, use this module.

To change the rules that restricts the use of an asset. The user only needs to have write
access to the directory where the asset exists.

When a request comes, the path to the requested asset is searched for access-files with
the name specified by the AccessFileName parameter, default .htaccess. When such a
file is found it is parsed and the restrictions in the file is applied to the request. This
means that a user do not need to have access to the webservers configuration-file to
limit the access to an asset. Furthermore the user can change the rules and the changes
will be applied immediately.

All the access-files in the path to a requested asset is read once per request, this means
that the load on the server will increase when this module is used.

The following configuration directives are supported

� AccessFileName [page 90]

DIRECTIVE: ”AccessFileName”

Syntax: AccessFileNameFileName1 FileName2
Default: .htaccess Module: mod htaccess(3) [page 90]

AccessFileName Specify which filenames that are used for access-files. When a request
comes every directory in the path to the requested asset will be searched after files with
the names specified by this parameter. If such a file is found the file will be parsed and
the restrictions specified in it will be applied to the request.

90 Inets

Inets Reference Manual mod htaccess

Access Files Directives

In every directory under the DocumentRoot or under an Alias a user can place an
access-file. An access-file is a plain text file that specify the restrictions that shall be
considered before the webserver answer to a request. If there are more than one
access-file in the path to the requested asset, the directives in the access-file in the
directory nearest the asset will be used.

� allow [page 91]

� AllowOverRide [page 91]

� AuthGroupFile [page 92]

� AuthName [page 92]

� AuthType [page 92]

� AuthUserFile [page 92]

� deny [page 93]

� <Limit> [page 93]

� order [page 93]

� require [page 94]

DIRECTIVE: ”allow”

Syntax: Allow from subnet subnet|from all
Default: from all
Module: mod htaccess(3) [page 90]
Context: <Limit> [page 93]
Related: mod auth(3), [page 62]

See the allow directive in the documentation of mod auth(3) for more information.

DIRECTIVE: ”AllowOverRide”

Syntax: AllowOverRide all | none | Directives
Default: - None -
Module: mod htaccess(3) [page 90]
AllowOverRide Specify which parameters that not access-files in subdirectories are
allowed to alter the value for. If the parameter is set to none no more access-files will be
parsed.

If only one access-file exists setting this parameter to none can lessen the burden on the
server since the server will stop looking for access-files.

91Inets

mod htaccess Inets Reference Manual

DIRECTIVE: ”AuthGroupfile”

Syntax: AuthGroupFile Filename
Default: - None -
Module: mod htaccess(3) [page 90]
Related: mod auth(3) [page 62],

AuthGroupFile indicates which file that contains the list of groups. Filename must
contain the absolute path to the file. The format of the file is one group per row and
every row contains the name of the group and the members of the group separated by a
space, for example:

GroupName: Member1 Member2 MemberN

DIRECTIVE: ”AuthName”

Syntax: AuthName auth-domain
Default: - None -
Module: mod htaccess(3) [page 90]
Related: mod auth(3) [page 62],

See the AuthName directive in the documentation of mod auth(3) for more
information.

DIRECTIVE: ”AuthType”

Syntax: AuthType Basic
Default: Basic
Module: mod htaccess(3) [page 90]
AuthType Specify which authentication scheme that shall be used. Today only Basic
Authenticating using UUEncoding of the password and user ID is implemented.

DIRECTIVE: ”AuthUserFile”

Syntax: AuthUserFile Filename
Default: - None -
Module: mod htaccess(3) [page 90]
Related: mod auth(3) [page 62],

AuthUserFile indicate which file that contains the list of users. Filename must contain
the absolute path to the file. The users name and password are not encrypted so do not
place the file with users in a directory that is accessible via the webserver. The format of
the file is one user per row and every row contains User Name and Password separated
by a colon, for example:

UserName:Password
UserName:Password

92 Inets

Inets Reference Manual mod htaccess

DIRECTIVE: ”deny”

Syntax: deny from subnet subnet|from all
Default: from all
Module: mod htaccess(3) [page 90]
Context: <Limit> [page 93]
Related: mod auth(3) [page 62],

See the deny directive in the documentation of mod auth(3) for more information.

DIRECTIVE: ”Limit”

Syntax: <Limit RequestMethods>
Default: - None -
Module: mod auth(3) [page 62]
Related: order [page 93], allow [page 91], deny [page 93], require [page 94]

<Limit> and </Limit> are used to enclose a group of directives which applies only to
requests using the specified methods. If no request method is specified all request
methods are verified against the restrictions.

<Limit POST GET HEAD>
order allow deny
require group group1
allow from 123.145.244.5
</Limit>

DIRECTIVE: ”order”

Syntax: order allow deny | deny allow
Default: allow deny
Module: mod htaccess(3) [page 90]
Context: order [page 93]
Related: allow [page 91], deny [page 93]

order, defines if the deny or allow control shall be preformed first.

If the order is set to allow deny, then first the users network address is controlled to be
in the allow subset. If the users network address is not in the allowed subset he will be
denied to get the asset. If the network-address is in the allowed subset then a second
control will be preformed, that the users network address is not in the subset of
network addresses that shall be denied as specified by the deny parameter.

If the order is set to deny allow then only users from networks specified to be in the
allowed subset will succeed to request assets in the limited area.

93Inets

mod htaccess Inets Reference Manual

DIRECTIVE: ”require”

Syntax: require group group1 group2...|user user1 user2...
Default: - None -
Context: <Limit> [page 93]
Module: mod htaccess(3) [page 90]
Related: mod auth(3) [page 62],

See the require directive in the documentation of mod auth(3) for more information.

EWSAPI MODULE INTERACTION

If a directory is limited both by mod auth and mod htaccess the user must be allowed
to request the asset for both of the modules.

Uses the following EWSAPI interaction data, if available:

freal name, fPath, AfterPathgg as defined in mod alias(3) [page 59].

Exports the following EWSAPI interaction data, if possible:

fremote user name, Userg The user name with which the user has authenticated
himself.

Uses the following exported EWSAPI functions:

� mod alias:path/3 [page 61]

94 Inets

Inets Reference Manual mod include

mod include
Erlang Module

This module makes it possible to expand “macros” embedded in HTML pages before
they are delivered to the client, that is Server-Side Includes (SSI). To make this possible
the server parses HTML pages on-the-fly and optionally includes the current date, the
requested file’s last modification date or the size (or last modification date) of other files.
In its more advanced form, it can include output from embedded CGI and /bin/sh
scripts.

Note:
Having the server parse HTML pages is a double edged sword! It can be costly for a
heavily loaded server to perform parsing of HTML pages while sending them.
Furthermore, it can be considered a security risk to have average users executing
commands in the name of the Erlang node user. Carefully consider these items
before activating server-side includes.

SERVER-SIDE INCLUDES (SSI) SETUP

The server must be told which filename extensions to be used for the parsed files. These
files, while very similar to HTML, are not HTML and are thus not treated the same.
Internally, the server uses the magic MIME type text/x-server-parsed-html to
identify parsed documents. It will then perform a format conversion to change these
files into HTML for the client. Update the mime.types file, as described in the Mime
Type Settings [page 43] section of httpd(3), to tell the server which extension to use
for parsed files, for example:

text/x-server-parsed-html shtml shtm

This makes files ending with .shtml and .shtm into parsed files. Alternatively, if the
performance hit is not a problem, all HTML pages can be marked as parsed:

text/x-server-parsed-html html htm

95Inets

mod include Inets Reference Manual

SERVER-SIDE INCLUDES (SSI) FORMAT

All server-side include directives to the server are formatted as SGML comments within
the HTML page. This is in case the document should ever find itself in the client’s
hands unparsed. Each directive has the following format:

<!--#command tag1="value1" tag2="value2" -->

Each command takes different arguments, most only accept one tag at a time. Here is a
breakdown of the commands and their associated tags:

config The config directive controls various aspects of the file parsing. There are two
valid tags:

errmsg controls the message sent back to the client if an error occurred while
parsing the document. All errors are logged in the server’s error log.

sizefmt determines the format used to display the size of a file. Valid choices are
bytes or abbrev. bytes for a formatted byte count or abbrev for an
abbreviated version displaying the number of kilobytes.

include will insert the text of a document into the parsed document. This command
accepts two tags:

virtual gives a virtual path to a document on the server. Only normal files and
other parsed documents can be accessed in this way.

file gives a pathname relative to the current directory. ../ cannot be used in
this pathname, nor can absolute paths. As above, you can send other parsed
documents, but you cannot send CGI scripts.

echo prints the value of one of the include variables (defined below). The only valid
tag to this command is var, whose value is the name of the variable you wish to
echo.

fsize prints the size of the specified file. Valid tags are the same as with the include
command. The resulting format of this command is subject to the sizefmt
parameter to the config command.

flastmod prints the last modification date of the specified file. Valid tags are the same
as with the include command.

exec executes a given shell command or CGI script. Valid tags are:

cmd executes the given string using /bin/sh. All of the variables defined below
are defined, and can be used in the command.

cgi executes the given virtual path to a CGI script and includes its output. The
server does not perform error checking on the script output.

SERVER-SIDE INCLUDES (SSI) ENVIRONMENT
VARIABLES

A number of variables are made available to parsed documents. In addition to the CGI
variable set, the following variables are made available:

DOCUMENT NAME The current filename.

DOCUMENT URI The virtual path to this document (such as
/docs/tutorials/foo.shtml).

96 Inets

Inets Reference Manual mod include

QUERY STRING UNESCAPED The unescaped version of any search query the client sent,
with all shell-special characters escaped with \.

DATE LOCAL The current date, local time zone.

DATE GMT Same as DATE LOCAL but in Greenwich mean time.

LAST MODIFIED The last modification date of the current document.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 60].

fremote user,RemoteUserg as defined in mod auth(3) [page 67]

Exports the following EWSAPI interaction data, if possible:

fmime type,MimeTypeg The file suffix of the incoming URL mapped into a MimeType
as defined in the Mime Type Settings [page 43] section of httpd core(3).

Uses the following EWSAPI functions:

� mod cgi:env/3 [page 75]

� mod alias:path/3 [page 61]

� mod alias:real name/3 [page 61]

� mod alias:real script name/3 [page 61]

SEE ALSO

httpd(3) [page 27], mod alias(3) [page 59], mod auth(3) [page 62], mod security(3)
[page 103], mod cgi(3) [page 74]

97Inets

mod log Inets Reference Manual

mod log
Erlang Module

This module makes it possible to log all incoming requests to an access log file. The
de-facto standard Common Logfile Format is used for this purpose. There are numerous
statistics programs available to analyze Common Logfile Format. The Common Logfile
Format looks as follows:

remotehost rfc931 authuser [date] “request” status bytes

remotehost Remote hostname

rfc931 The client’s remote username (RFC 931).

authuser The username with which the user authenticated himself.

[date] Date and time of the request (RFC 1123).

“request” The request line exactly as it came from the client (RFC 1945).

status The HTTP status code returned to the client (RFC 1945).

bytes The content-length of the document transferred.

This module furthermore supports the use of an error log file to record internal server
errors. The error log format is more ad hoc than Common Logfile Format, but conforms
to the following syntax:

[date] access to path failed for remotehost, reason: reason

DIRECTIVE: ”ErrorLog”

Syntax: ErrorLog filename
Default: - None -
Module: mod log(3) [page 98]

ErrorLog defines the filename of the error log file to be used to log server errors. If the
filename does not begin with a slash (/) it is assumed to be relative to the ServerRoot
[page 47], for example:

ErrorLog logs/error log 8080

and errors will be logged in the server root27 space.
27In Windows: %SERVER ROOT%\logs\error log 8080. In UNIX: $SERVER ROOT/logs/error log 8080.

98 Inets

Inets Reference Manual mod log

DIRECTIVE: ”SecurityLog”

Syntax: SecurityLog filename
Default: - None -
Module: mod log(3) [page 98]

SecurityLog defines the filename of the access log file to be used to log security
events. If the filename does not begin with a slash (/) it is assumed to be relative to the
ServerRoot [page 47]. For example:

SecurityLog logs/security log 8080

and security events will be logged in the server root28 space.

DIRECTIVE: ”TransferLog”

Syntax: TransferLog filename
Default: - None -
Module: mod log(3) [page 98]

TransferLog defines the filename of the access log file to be used to log incoming
requests. If the filename does not begin with a slash (/) it is assumed to be relative to
the ServerRoot [page 47]. For example:

TransferLog logs/access log 8080

and errors will be logged in the server root29 space.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

fremote user,RemoteUserg as defined in mod auth(3) [page 67].

This module furthermore exports a batch of functions to be used by other EWSAPI
modules:

28In Windows: %SERVER ROOT%\logs\security log 8080. In UNIX: $SERVER ROOT/logs/security log 8080.
29In Windows: %SERVER ROOT%\logs\access log 8080. In UNIX: $SERVER ROOT/logs/access log 8080.

99Inets

mod log Inets Reference Manual

Exports

error log(Socket,SocketType,ConfigDB,Date,Reason) -> ok | no error log

Types:

� Socket = socket()
� SocketType = ip comm | ssl
� ConfigDB = config db()
� Date = Reason = string()

error log/5 logs an error in a log file. Socket is a handler to a socket of type
SocketType and config db() is the server config file in ETS table format as described
in httpd(3) [page 27]. Date is a RFC 1123 date string as generated by
httpd util:rfc1123 date/0 [page 55].

SEE ALSO

httpd(3) [page 27], mod auth(3) [page 62], mod security(3) [page 103],
mod disk log(3) [page 78]

100 Inets

Inets Reference Manual mod range

mod range
Erlang Module

This module response to requests for one or many ranges of a file. This is especially
useful when downloading large files, since a broken download may be resumed.

Note that request for multiple parts of a document will report a size of zero to the log
file.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 60].

Uses the following EWSAPI functions:

� mod alias:path/3 [page 61]

SEE ALSO

httpd(3) [page 27], mod get(3) [page 59]

101Inets

mod responsecontrol Inets Reference Manual

mod responsecontrol
Erlang Module

This module controls that the conditions in the requests is fullfilled. For example a
request may specify that the answer only is of interest if the content is unchanged since
last retrieval. Or if the content is changed the range-request shall be converted to a
request for the whole file instead.

If a client sends more then one of the header fields that restricts the servers right to
respond, the standard does not specify how this shall be handled. httpd will control
each field in the following order and if one of the fields not match the current state the
request will be rejected with a proper response.
1.If-modified
2.If-Unmodified
3.If-Match
4.If-Nomatch

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 60].

Exports the following EWSAPI interaction data, if possible:

fif range,send fileg The conditions for the range request was not fullfilled. The
response must not be treated as a range request, instead it must be treated as a
ordinary get request.

Uses the following EWSAPI functions:

� mod alias:path/3 [page 61]

SEE ALSO

httpd(3) [page 27], mod get(3) [page 59]

102 Inets

Inets Reference Manual mod security

mod security
Erlang Module

This module serves as a filter for authenticated requests handled in mod auth. It
provides possibility to restrict users from access for a specified amount of time if they
fail to authenticate several times. It logs failed authentication as well as blocking of
users, and it also calls a configurable call-back module when the events occur.

There is also an API to manually block, unblock and list blocked users or users, who
have been authenticated within a configurable amount of time.

This module understands the following configuration directives:

� <Directory> [page 62]

� SecurityDataFile [page 103]

� SecurityMaxRetries [page 104]

� SecurityBlockTime [page 104]

� SecurityFailExpireTime [page 104]

� SecurityAuthTimeout [page 105]

� SecurityCallbackModule [page 105]

DIRECTIVE: ”SecurityDataFile”

Syntax: SecurityDataFile filename
Default: - None -
Module: mod security(3) [page 103]
Context: <Directory> [page 62]
Related: SecurityMaxRetries [page 104], SecurityBlockTime [page 104],
SecurityFailExpireTime [page 104], SecurityAuthTimeout [page 105],
SecurityCallbackModule [page 105]

SecurityDataFile sets the name of the security modules for a directory. The filename
can be either absolute or relative to the ServerRoot. This file is used to store persistent
data for the mod security module.

Note:
Several directories can have the same SecurityDataFile.

103Inets

mod security Inets Reference Manual

DIRECTIVE: ”SecurityMaxRetries”

Syntax: SecurityMaxRetries integer() | infinity
Default: 3
Module: mod security(3) [page 103]
Context: <Directory> [page 62]
Related: SecurityDataFile [page 103], SecurityBlockTime [page 104],
SecurityFailExpireTime [page 104], SecurityAuthTimeout [page 105],
SecurityCallbackModule [page 105]

SecurityMaxRetries specifies the maximum number of tries to authenticate a user has
before he is blocked out. If a user successfully authenticates when he is blocked, he will
receive a 403 (Forbidden) response from the server.

Note:
For security reasons, failed authentications made by this user will return a message
401 (Unauthorized), even if the user is blocked.

DIRECTIVE: ”SecurityBlockTime”

Syntax: SecurityBlockTime integer() | infinity
Default: 60
Module: mod security(3) [page 103]
Context: <Directory> [page 62]
Related: SecurityDataFile [page 103], SecurityMaxRetries [page 104],
SecurityFailExpireTime [page 104], SecurityAuthTimeout [page 105],
SecurityCallbackModule [page 105]

SecurityBlockTime specifies the number of minutes a user is blocked. After this
amount of time, he automatically regains access.

DIRECTIVE: ”SecurityFailExpireTime”

Syntax: SecurityFailExpireTime integer() | infinity
Default: 30
Module: mod security(3) [page 103]
Context: <Directory> [page 62]
Related: SecurityDataFile [page 103], SecurityMaxRetries [page 104],
SecurityFailExpireTime [page 104], SecurityAuthTimeout [page 105],
SecurityCallbackModule [page 105]

SecurityFailExpireTime specifies the number of minutes a failed user authentication
is remembered. If a user authenticates after this amount of time, his previous failed
authentications are forgotten.

104 Inets

Inets Reference Manual mod security

DIRECTIVE: ”SecurityAuthTimeout”

Syntax: SecurityAuthTimeout integer() | infinity
Default: 30
Module: mod security(3) [page 103]
Context: <Directory> [page 62]
Related: SecurityDataFile [page 103], SecurityMaxRetries [page 104],
SecurityFailExpireTime [page 104], SecurityFailExpireTime [page 104],
SecurityCallbackModule [page 105]

SecurityAuthTimeout specifies the number of seconds a successful user authentication
is remembered. After this time has passed, the authentication will no longer be
reported by the list auth users [page 105] function.

DIRECTIVE: ”SecurityCallbackModule”

Syntax: SecurityCallbackModule atom()
Default: - None -
Module: mod security(3) [page 103]
Context: <Directory> [page 62]
Related: SecurityDataFile [page 103], SecurityMaxRetries [page 104],
SecurityFailExpireTime [page 104], SecurityFailExpireTime [page 104],
SecurityAuthTimeout [page 105]

SecurityCallbackModule specifies the name of a callback module. This module only
has one export, event/4 [page 107], which is called whenever a security event occurs.
Read the callback module [page 106] documentation to find out more.

Exports

list auth users(Port) -> Users | []

list auth users(Address, Port) -> Users | []

list auth users(Port, Dir) -> Users | []

list auth users(Address, Port, Dir) -> Users | []

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list() = [string()]

list auth users/1, list auth users/2 and list auth users/3 returns a list of users
that are currently authenticated. Authentications are stored for SecurityAuthTimeout
seconds, and are then discarded.

list blocked users(Port) -> Users | []

list blocked users(Address, Port) -> Users | []

list blocked users(Port, Dir) -> Users | []

list blocked users(Address, Port, Dir) -> Users | []

105Inets

mod security Inets Reference Manual

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list() = [string()]

list blocked users/1, list blocked users/2 and list blocked users/3 returns a
list of users that are currently blocked from access.

block user(User, Port, Dir, Seconds) -> true | ferror, Reasong

block user(User, Address, Port, Dir, Seconds) -> true | ferror, Reasong

Types:

� User = string()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Seconds = integer() | infinity
� Reason = no such directory

block user/4 and block user/5 blocks the user User from the directory Dir for a
specified amount of time.

unblock user(User, Port) -> true | ferror, Reasong

unblock user(User, Address, Port) -> true | ferror, Reasong

unblock user(User, Port, Dir) -> true | ferror, Reasong

unblock user(User, Address, Port, Dir) -> true | ferror, Reasong

Types:

� User = string()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Reason = term()

unblock user/2, unblock user/3 and unblock user/4 removes the user User from
the list of blocked users for the Port (and Dir) specified.

The SecurityCallbackModule

The SecurityCallbackModule is a user written module that can receive events from the
mod security EWSAPI module. This module only exports one function, event/4 [page
107], which is described below.

106 Inets

Inets Reference Manual mod security

Exports

event(What, Port, Dir, Data) -> ignored

event(What, Address, Port, Dir, Data) -> ignored

Types:

� What = atom()
� Port = integer()
� Address = fA,B,C,Dg | string() <v>Dir = string()
� What = [Info]
� Info = fName, Valueg

event/4 or event/4 is called whenever an event occurs in the mod security EWSAPI
module (event/4 is called if Address is undefined and event/5 otherwise). The What
argument specifies the type of event that has occurred, and should be one of the
following reasons; auth fail (a failed user authentication), user block (a user is being
blocked from access) or user unblock (a user is being removed from the block list).

Note:
Note that the user unblock event is not triggered when a user is removed from the
block list explicitly using the unblock user function.

107Inets

mod trace Inets Reference Manual

mod trace
Erlang Module

This module is responsible for handling of TRACE requests. Trace is a new request
method in HTTP/1.1. The intended use of trace requests is for testing. The body of the
trace response is the request message that the responding Web server or proxy received.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

SEE ALSO

httpd(3) [page 27],

108 Inets

Glossary

Gateway

A server which acts as an intermediary for some other server. Unlike a proxy, a gateway receives
requests as if it were the origin server for the requested resource; the requesting client may not be
aware that it is communicating with a gateway.

HTTP

Hypertext Transfer Protocol.

MIME

Multi-purpose Internet Mail Extensions.

Proxy

An intermediary program which acts as both a server and a client for the purpose of making requests on
behalf of other clients.

RFC

A ”Request for Comments” used as a proposed standard by IETF.

109Inets

Glossary

110 Inets

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

account/2
ftp , 20

add_group_member/3
mod auth , 69

add_group_member/4
mod auth , 69

add_group_member/5
mod auth , 69

add_user/2
mod auth , 68

add_user/5
mod auth , 68

add_user/6
mod auth , 68

append/3
ftp , 20

append_bin/3
ftp , 20

append_chunk/2
ftp , 20

append_chunk_end/1
ftp , 21

append_chunk_start/2
ftp , 20

block/0
httpd , 31

block/1
httpd , 31

block/2
httpd , 31

block/3
httpd , 31

block/4

httpd , 31

block_user/4
mod security , 106

block_user/5
mod security , 106

cd/2
ftp , 21

check_enum/2
httpd conf , 40

clean/1
httpd conf , 40

close/1
ftp , 21

convert_request_date/1
httpd util , 51

create_etag/1
httpd util , 51

custom_clean/3
httpd conf , 40

day/1
httpd util , 51

decode_base64/1
httpd util , 51

decode_hex/1
httpd util , 51

default_index/2
mod alias , 60

delete/2
ftp , 21

delete_group/2
mod auth , 71

delete_group/4

111Inets

Index of Modules and Functions

mod auth , 71

delete_group_member/3
mod auth , 70

delete_group_member/4
mod auth , 70

delete_group_member/5
mod auth , 70

delete_user/2
mod auth , 68

delete_user/3
mod auth , 68

delete_user/4
mod auth , 68

deliver/2
mod esi , 86

deliver/3
httpd socket , 50

encode_base64/1
httpd util , 52

env/3
mod cgi , 75

error_log/5
mod disk log , 80
mod log , 100

event/4
mod security , 107

event/5
mod security , 107

flatlength/1
httpd util , 52

formaterror/1
ftp , 21

ftp
account/2, 20
append/3, 20
append_bin/3, 20
append_chunk/2, 20
append_chunk_end/1, 21
append_chunk_start/2, 20
cd/2, 21
close/1, 21
delete/2, 21
formaterror/1, 21
lcd/2, 21

lpwd/1, 21
ls/2, 22
mkdir/2, 22
nlist/2, 22
open/2, 22
open/3, 22
pwd/1, 23
recv/3, 23
recv_bin/2, 23
rename/3, 23
rmdir/2, 24
send/3, 24
send_bin/3, 24
send_chunk/2, 24
send_chunk_end/1, 25
send_chunk_start/2, 24
type/2, 25
user/3, 25
user/4, 25

get_user/2
mod auth , 68

get_user/3
mod auth , 68

get_user/4
mod auth , 68

getBrowser/1
mod browser , 73

header/2
httpd util , 52

header/3
httpd util , 52

header/4
httpd util , 52

hexlist_to_integer/1
httpd util , 52

httpd
block/0, 31
block/1, 31
block/2, 31
block/3, 31
block/4, 31
Module:do/1, 32
Module:load/2, 33
Module:remove/1, 34
Module:store/3, 33
parse_query/1, 32
restart/0, 30

112 Inets

Index of Modules and Functions

restart/1, 30
restart/2, 30
start/0, 30
start/1, 30
start_link/0, 30
start_link/1, 30
stop/0, 30
stop/1, 31
stop/2, 31
unblock/0, 31
unblock/1, 31
unblock/2, 32

httpd conf
check_enum/2, 40
clean/1, 40
custom_clean/3, 40
is_directory/1, 40
is_file/1, 41
make_integer/1, 41

httpd socket
deliver/3, 50
peername/2, 50
resolve/0, 50

httpd util
convert_request_date/1, 51
create_etag/1, 51
day/1, 51
decode_base64/1, 51
decode_hex/1, 51
encode_base64/1, 52
flatlength/1, 52
header/2, 52
header/3, 52
header/4, 52
hexlist_to_integer/1, 52
integer_tohexlist/1, 52
key1search/2, 53
key1search/3, 53
lookup/2, 53
lookup/3, 53
lookup_mime/2, 53
lookup_mime/3, 53
lookup_mime_default/2, 53
lookup_mime_default/3, 53
message/3, 54
month/1, 54
multi_lookup/2, 54
reason_phrase/1, 54
rfc1123_date/0, 55
rfc1123_date/6, 55
split/3, 55

split_path/1, 55
split_script_path/1, 55
strip/1, 55
suffix/1, 56
to_lower/1, 56
to_upper/1, 56

integer_tohexlist/1
httpd util , 52

is_directory/1
httpd conf , 40

is_file/1
httpd conf , 41

key1search/2
httpd util , 53

key1search/3
httpd util , 53

lcd/2
ftp , 21

list_auth_users/1
mod security , 105

list_auth_users/2
mod security , 105

list_auth_users/3
mod security , 105

list_blocked_users/1
mod security , 105

list_blocked_users/2
mod security , 105

list_blocked_users/3
mod security , 105

list_group_members/2
mod auth , 70

list_group_members/3
mod auth , 70

list_group_members/4
mod auth , 70

list_groups/1
mod auth , 70

list_groups/2
mod auth , 70

list_groups/3
mod auth , 71

113Inets

Index of Modules and Functions

list_users/1
mod auth , 69

list_users/3
mod auth , 69

lookup/2
httpd util , 53

lookup/3
httpd util , 53

lookup_mime/2
httpd util , 53

lookup_mime/3
httpd util , 53

lookup_mime_default/2
httpd util , 53

lookup_mime_default/3
httpd util , 53

lpwd/1
ftp , 21

ls/2
ftp , 22

make_integer/1
httpd conf , 41

message/3
httpd util , 54

mkdir/2
ftp , 22

mod alias
default_index/2, 60
path/3, 60
real_name/3, 61
real_script_name/3, 61

mod auth
add_group_member/3, 69
add_group_member/4, 69
add_group_member/5, 69
add_user/2, 68
add_user/5, 68
add_user/6, 68
delete_group/2, 71
delete_group/4, 71
delete_group_member/3, 70
delete_group_member/4, 70
delete_group_member/5, 70
delete_user/2, 68
delete_user/3, 68

delete_user/4, 68
get_user/2, 68
get_user/3, 68
get_user/4, 68
list_group_members/2, 70
list_group_members/3, 70
list_group_members/4, 70
list_groups/1, 70
list_groups/2, 70
list_groups/3, 71
list_users/1, 69
list_users/3, 69
update_password/5, 71
update_password/6, 71

mod browser
getBrowser/1, 73

mod cgi
env/3, 75
status_code/1, 76

mod disk log
error_log/5, 80
security_log/2, 81

mod esi
deliver/2, 86
Module:Function/2, 87
Module:Function/3, 87

mod log
error_log/5, 100

mod security
block_user/4, 106
block_user/5, 106
event/4, 107
event/5, 107
list_auth_users/1, 105
list_auth_users/2, 105
list_auth_users/3, 105
list_blocked_users/1, 105
list_blocked_users/2, 105
list_blocked_users/3, 105
unblock_user/2, 106
unblock_user/3, 106
unblock_user/4, 106

Module:do/1
httpd , 32

Module:Function/2
mod esi , 87

Module:Function/3
mod esi , 87

114 Inets

Index of Modules and Functions

Module:load/2
httpd , 33

Module:remove/1
httpd , 34

Module:store/3
httpd , 33

month/1
httpd util , 54

multi_lookup/2
httpd util , 54

nlist/2
ftp , 22

open/2
ftp , 22

open/3
ftp , 22

parse_query/1
httpd , 32

path/3
mod alias , 60

peername/2
httpd socket , 50

pwd/1
ftp , 23

real_name/3
mod alias , 61

real_script_name/3
mod alias , 61

reason_phrase/1
httpd util , 54

recv/3
ftp , 23

recv_bin/2
ftp , 23

rename/3
ftp , 23

resolve/0
httpd socket , 50

restart/0
httpd , 30

restart/1
httpd , 30

restart/2
httpd , 30

rfc1123_date/0
httpd util , 55

rfc1123_date/6
httpd util , 55

rmdir/2
ftp , 24

security_log/2
mod disk log , 81

send/3
ftp , 24

send_bin/3
ftp , 24

send_chunk/2
ftp , 24

send_chunk_end/1
ftp , 25

send_chunk_start/2
ftp , 24

split/3
httpd util , 55

split_path/1
httpd util , 55

split_script_path/1
httpd util , 55

start/0
httpd , 30

start/1
httpd , 30

start_link/0
httpd , 30

start_link/1
httpd , 30

status_code/1
mod cgi , 76

stop/0
httpd , 30

stop/1
httpd , 31

115Inets

Index of Modules and Functions

stop/2
httpd , 31

strip/1
httpd util , 55

suffix/1
httpd util , 56

to_lower/1
httpd util , 56

to_upper/1
httpd util , 56

type/2
ftp , 25

unblock/0
httpd , 31

unblock/1
httpd , 31

unblock/2
httpd , 32

unblock_user/2
mod security , 106

unblock_user/3
mod security , 106

unblock_user/4
mod security , 106

update_password/5
mod auth , 71

update_password/6
mod auth , 71

user/3
ftp , 25

user/4
ftp , 25

116 Inets

